ORGANIC
LETTERS
2013
Vol. 15, No. 14
3686–3689
Memory of Chirality Approach to the
Enantiodivergent Synthesis of Chiral
Benzo[d]sultams
Francesca Foschi,† Aaron Tagliabue,‡ Voichita Mihali,‡ Tullio Pilati,† Ilir Pecnikaj,‡
and Michele Penso*,†
CNR-Institute of Molecular Science and Technologies (ISTM), Via Golgi 19,
ꢀ
I-20133 Milano, Italy, and Dipartimento di Chimica, Universita degli Studi di Milano,
Via Golgi 19, I-20133 Milano, Italy
Received June 3, 2013
ABSTRACT
The “memory of chirality” stereodivergent synthesis of polyfluorobenzo[d]sultams has been developed. The interest of this protocol resides in
the possibility of using the chirality of a starting sulfonamide single enantiomer to synthesize the target sultams in both absolute configurations,
by using different base systems, under homogeneous conditions.
The “memory of chirality” (MOC) strategy, widely used
in asymmetric synthesis, has been extensively applied by
Kawabata1 and other authors2 to the synthesis of
several enantiopure compounds. In particular, Kawabata
applied MOC protocols to the enantioselective synthesis of
R,R-disubstituted R-amino acids, through intramolecular
alkylation,1g,j,q,r conjugate addition,1h,s carbonyl migration,1c
and Dieckman condensation1e or intermolecular alkyla-
tion,1i,lꢀn aldol condensation,2b and conjugate addition2a
of readily available optically active R-amino acid deriva-
tives, without any external source of chirality.3 The for-
mation of long-lifetime conformers, which derive their
† CNR-Institute of Molecular Science and Technologies.
‡
ꢀ
Universita degli Studi di Milano.
(1) (a) Yoshimura, T.; Kinoshita, T.; Yoshioka, H.; Kawabata, T. Org.
Lett. 2013, 15, 864–867. (b) Watanabe, H.; Yoshimura, T.; Kawakami, S.;
Sasamori, T.; Tokitoh, N.; Kawabata, T. Chem. Commun. 2012, 48, 5346–
5348and references therein. (c) Teraoka, F.; Fuji, K.; Ozturk, O.; Yoshi-
mura, T.; Kawabata, T. Synlett 2011, 543–546. (d) Kawabata, T. ACS
Symp. Ser. 2009, 1009, 31–56. (e) Watanabe, T.;Kawabata, T. Heterocycles
2008, 76, 1593–1606. (f) Moriyama, K.; Sakai, H.; Kawabata, T. Org. Lett.
2008, 10, 3883–3886. (g) Kawabata, T.; Moriyama, K.; Kawakami, S.;
Tsubaki, K. J. Am. Chem. Soc. 2008, 130, 4153–4157. (h) Kawabata, T.;
Majmudar, S.; Tsubaki, K.; Monguchi, D. Org. Biomol. Chem. 2005, 3,
1609–1611. (i) Kawabata, T.; Chen, J.; Suzuki, H.; Fuji, K. Synthesis 2005,
1368–1377. (j) Kawabata, T.; Kawakami, S.; Majmudar, S. J. Am. Chem.
Soc. 2003, 125, 13012–13013. (k) Kawabata, T.; Fuji, K. Memory of
Chirality: Asymmetric Induction Based on the Dynamic Chirality of
Enolates. In Topics in Stereochemistry; Denmark, S. E., Ed.; John Wiley &
Sons, Inc.: Hoboken, NJ, 2003; Vol. 23. (l) Kawabata, T.; Suzuki, H.; Nagae,
Y.; Fuji, K. Angew. Chem., Int. Ed. 2000, 39, 2155–2157. (m) Kawabata, T.;
Chen, J.; Suzuki, H.; Nagae, Y.; Kinoshita, T.; Chancharunee, S.; Fuji, K.
Org. Lett. 2000, 2, 3883–3885. (n) Fuji, K.; Kawabata, T. Chem.ꢀEur. J.
1998, 4, 373–376. (o) Kawabata, T.; Fuji, K. J. Syn. Org. Chem. Jpn. 1994,
52, 589–595. (p) Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc.
1991, 113, 9694–9696. (q) Kawabata, T.; Matsuda, S.; Kawakami, S.;
Monguchi, D.; Moriyama, K. J. Am. Chem. Soc. 2006, 128, 15394–15395.
(r) Kawabata, T.; Wirth, T.; Yahiro, K.; Suzuki, H.; Fuji, K. J. Am. Chem.
Soc. 1994, 116, 10809–10810. (s) Yoshimura, T.; Takuwa, M.; Tomohara,
K.; Uyama, M.; Hayashi, K.; Yang, P.; Hyakutake, R.; Sasamori, T.;
Tokitoh, N.; Kawabata, T. Chem.ꢀEur. J. 2012, 18, 15330–15336.
(2) For recent references see: (a) Sasmal, A.; Taniguchi, T.; Wipf, P.;
Curran, D. P. Can. J. Chem. 2013, 91, 1–5. (b) Ghorai, M. K.; Ghosh, K.;
Yadav, A. K.; Nanaji, Y.; Halder, S.; Sayyad, M. J. Org. Chem. 2013, 78,
2311–2326. (c) Patil, N. T. Chem. Asian J. 2012, 7, 2186–2194. (d)
Mondal, S.; Nechab, M.; Vanthuyne, N.; Bertrand, M. P. Chem.
Commun. 2012, 48, 2549–2551. (e) Campolo, D.; GaudelꢀSiri, A.;
Mondal, S.; Siri, D.; Besson, E.; Vanthuyne, N.; Nechab, M.; Bertrand,
M. P. J. Org. Chem. 2012, 77, 2773–2783. (f) Mai, T. T.; Viswambharan,
B.; Gori, D.; Kouklovsky, C.; Alezra, V. J. Org. Chem. 2012, 77, 8797–
8801. (g) Farran, D.; Archirel, P.; Toupet, L.; Martinez, J.; Dewynter, G.
Eur. J. Org. Chem. 2011, 2043–2047.
(3) MOC approach, according to Carlier et al., “... can be defined as a
formal substitution at an sp3 stereogenic center that proceeds stereo-
specifically, even though the reaction proceeds by trigonalization of that
center, and despite the fact that no other permanently chiral elements are
present in the system”. Zhao, H.; Hsu, D. C.; Carlier, P. R. Synthesis
2005, 1–16.
r
10.1021/ol401557v
Published on Web 07/05/2013
2013 American Chemical Society