(AAA) have proven to be some of the most important
methods for the asymmetric formation of CÀC and CÀX
bonds.4 These reactions have been demonstrated success-
fully in the desymmetrization of meso-allylic substrates.5
In sharp contrast, examples of the desymmetrization of
nucleophiles are very scarce and only isolated cases have
been reported using O- or N-nucleophiles.6 Recently, the
desymmetrization of meso-carbon nucleophiles through
dual palladium- and proline-catalyzed allylic alkylation
We commenced our studies using 8-allyl-nortropan-3-
one (1a) as a model substrate. Initially, the nortropan-3-one
1a was subjected to a reaction with allyl reagent 2a under
the effect of the catalyst derived from [Pd(η3-C3H5)Cl]2
and (Rphos,Ra)-L1 in the presence of LiHMDS (entry 1,
Table 1). Allylation product 3a was afforded in 43%
yield and with 71% ee and excellent diastereoselectivity.
Encouraged by these results, the impact of the chiral
ferrocene-based SIOCPhox ligands on the reaction was
investigated (Figure 1). Ligand (Sphos,Ra)-L2 gave much
lower ee compared with (Rphos,Ra)-L1 (entry 2 vs 1,
Table 1), which indicated that the chiralities in the ligand
L1 were matched. Further investigation of different com-
binations of chiral elements in the ferrocene-based ligands
SIOCPhox uncovered that the chiralities in the ligand
(Sc,Sphos,Sa)-L6 were matched (entries 3À6, Table 1).
Then the influence of substituents on the oxazoline ring
of SIOCPhox was examined (entries 6À8, Table 1) and the
(Sc,Sphos,Sa)-L6 with isopropyl as the substituent proved
to be the best ligand, affording the allylated product 3a in
74% ee andin 44%yield. Theuseof (Sc,Sphos,Sa)-L7 ledto
a higher yield but an inferior enantiomeric ratio compared to
(Sc,Sphos,Sa)-L6 (entry 6 vs 7, Table 1). With (Sc,Sphos,Sa)-
L6 as the ligand, the allyl reagents 2 were evaluated
(entries 9À11, Table 1). It was found that the acetate 2b
was superior in terms of the enantioselectivity (entry 9,
Table 1). The yield decreased to 19% when the allyl 2c was
employed while 80% ee was obtained (entry 10, Table 1).
ꢀ
was reported with moderate diastereoselectivity by Cordova
and Breit respectively, but enantioselective control was not
realized.7 On the basis of our recent work on Pd-AAA using
enolates as nucleophiles,8 we envisioned that desymmetriza-
tion of 8-azabicyclo[3.2.1]-3-one by Pd-AAA might provide
a possible method for the synthesis of optically active
tropane derivatives bearing three chiral centers. In this
communication, we disclose our preliminary results on this
study.
Table 1. Influence of Ligand and Allyl Substrates on the Pd-
Catalyzed Desymmetrization of 8-Allyl-nortropan-3-one (1a)a
Figure 1. Ferrocene-based ligands SIOCPhox.
(4) (a) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catal-
ysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York,
1999; Vol. 2, p 833. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003,
103, 2921. (c) Lu, Z.; Ma, S. M. Angew. Chem., Int. Ed. 2008, 47, 258.
(5) Review: (a) Trost, B. M. Isr. J. Chem. 1997, 37, 109. For some
recent examples, see: (b) Stragies, R.; Blechert, S. J. Am. Chem. Soc.
2000, 122, 9584. (c) Trost, B. M.; Dirat, O.; Dudash, J., Jr.; Hembre, E. J.
Angew. Chem., Int. Ed. 2001, 40, 3658. (d) Piarulli, U.; Daubos, P.;
Claverie, C.; Roux, M.; Gennari, C. Angew. Chem., Int. Ed. 2003, 42,
234. (e) Piarulli, U.; Claverie, C.; Daubos, P.; Gennari, C.; Minnaard,
A. J.; Feringa, B. L. Org. Lett. 2003, 5, 4493. (f) Trost, B. M.; Aponick,
A. J. Am. Chem. Soc. 2006, 128, 3931. (g) Chapsal, B. D.; Ojima, I. Org.
Lett. 2006, 8, 1395. (h) Trost, B. M.; Dong, G. J. Am. Chem. Soc. 2006,
128, 6054.
yield
(%)b
ee
entry
2
ligand
drc
(%)c
1
2a
2a
2a
2a
2a
2a
2a
2a
2b
2c
2d
2b
(Rphos,Ra)-L1
43
41
43
36
48
44
66
40
43
19
45
35
99/1
67
32
32
7
2
(Sphos,Ra)-L2
99/1
3
(Sc,Rphos,Ra)-L3
(Sc,Sphos,Ra)-L4
(Sc,Rphos,Sa)-L5
(Sc,Sphos,Sa)-L6
(Sc,Sphos,Sa)-L7
(Sc,Sphos,Sa)-L8
(Sc,Sphos,Sa)-L6
(Sc,Sphos,Sa)-L6
(Sc,Sphos,Sa)-L6
(Sphos,Sa)-L9
99/1
4
63/1
(6) (a) Jiang, L.; Burke, S. D. Org. Lett. 2002, 4, 3411. (b) Kitagawa,
O.; Yotsumoto, K.; Kohriyama, M.; Dobashi, Y.; Taguchi, T. Org. Lett.
2004, 6, 3605. (c) Kitagawa, O.; Matsuo, S.; Yotsumoto, K.; Taguchi, T.
J. Org. Chem. 2006, 71, 2524.
5
>99/1
>99/1
>99/1
>99/1
99/1
7
6
74
47
47
81
80
64
1/2
7
8
ꢀ
(7) (a) Ibrahern, I.; Cordova, A. Angew. Chem., Int. Ed. 2006, 45,
9
1952. (b) Usui, I.; Schmidt, S.; Breit, B. Org. Lett. 2009, 11, 1453.
(8) (a) Yan, X.-X.; Liang, C.-G.; Zhang, Y.; Hong, W.; Cao, B.-X.;
Dai, L.-X.; Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544. (b) Zheng,
W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007,
129, 7718. (c) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y.-D. Angew.
Chem., Int. Ed. 2008, 47, 1741. (d) Liu, W.; Chen, D.; Zhu, X.-Z.; Wan,
X.-L.; Hou, X.-L. J. Am. Chem. Soc. 2009, 131, 8734. (e) Lei, B.-L.;
Ding, C.-H.; Yang, X.-F.; Wan, X.-L.; Hou, X.-L. J. Am. Chem. Soc.
2009, 131, 18250. (f) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou, X.-L.; Dai,
L.-X. J. Am. Chem. Soc. 2010, 132, 15493.
10
11
12d
99/1
49/1
1/1.3
a Molar ratio of [Pd(η3-C3H5)Cl]2/L/1a/2/LiHMDS/LiCl = 2.5/5/
100/150/100/400. b Isolated yield. c Determined by chiral GC. d Com-
pound 1c was used as substrate.
Org. Lett., Vol. 15, No. 15, 2013
3881