2,3-Dihydroquinolin-4-one Derivatives
COMMUNICATION
18250–18251; c) Z. Feng, Q.-L. Xu, L.-X. Dai, S.-L. You, Heterocy-
5592–5595; e) X. Zhang, J. Chen, F. Han, L. Cun, J. Liao, Eur. J.
Org. Chem. 2011, 39, 1443–1446.
that one guanidine–amide moiety activates the substrate
through hydrogen-bonding interactions, and the other guani-
dium functional group, in conjuction with the counterion,
provides a steric variation that is crucial in defining the size
and shape of the substrate binding pocket.
In summary, we have developed a highly efficient bisgua-
nidium organocatalyst for an intramolecular aza-Michael re-
action and a one-pot bromination reaction, affording a
series of optically enriched, 2-substituted dihydroquinones
and brominated dihydroquinones (up to 99% yield and
99% ee for the aza-Michael reaction; and up to 95% yield,
96:4 d.r., and 95% ee for the one-pot bromination reaction).
Both 2-aryl- and 2-alkyl-substituted products could be gen-
erated with excellent outcomes. Further studies into the re-
action mechanism are currently in progress.
[3] L. Feng, J. Nie, J.-W. Hu, Y. Zheng, J.-A. Ma, J. Org. Chem. 2012,
77, 2398–2406.
[5] CCDC-897037 (2 f), 892342 (4a) and 892841 (5a) contain the sup-
plementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
[6] For reviews on chiral guanidine catalysts, see: a) T. Ishikawa, T.
Kumamoto, H. Seki, K. Fukuda, T. Isobe, Chem. Commun. 2001, 37,
245–246; f) H. Liu, D. Leow, K.-W. Huang, C.-H. Tan, J. Am. Chem.
sawa, Synlett 2009, 667–670; l) C. Uyeda, A. R. Rotheli, E. N. Jacob-
Experimental Section
Typical procedure for the asymmetric intramolecular aza-Michael reac-
tion: Bisguanidium salt catalyst 1c·HBArF (5 mol%, 4.3 mg) and sub-
4
strate 2a (23.8 mg, 0.05 mmol) were stirred in a dry reaction tube at
À608C for 0.5 h. Subsequently, CH2Cl2(0.5 mL; cooled at À608C) was
added. The reaction was stirred at À608C and monitored by TLC. After
complete consumption of the starting materials, the mixture was directly
purified by column chromatography on silica gel (petroleum ether/ethyl
acetate=8:1) to afford 3a (23.6 mg, 99% yield) as a light yellow solid.
Typical procedure for the asymmetric one-pot bromination reaction: Bis-
guanidium salt catalyst 1c·HBArF (5 mol%, 8.6 mg), 4 ꢂ molecular
4
[7] For selected examples of hydrogen bonding interaction pattern of
guanidine, see: a) W. Ye, J. Xu, C. T. Tan, C. H. Tan, Tetrahedron
Lett. 2005, 46, 6875–6878; b) T. Kumamoto, K. Ebine, M. Endo, Y.
Araki, Y. Fushimi, I. Miyamoto, T. Ishikawa, T. Isobe, K. Fukuda,
Heterocycles 2005, 66, 347–359; c) M. Terada, M. Nakano, H. Ube,
J. Am. Chem. Soc. 2006, 128, 16044–16045; d) M. Terada, H. Ube,
Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454–1455; e) W. Ye, Z.
Jiang, Y. Zhao, S. L. M. Goh, D. Leow, Y.-T. Soh, C.-H. Tan, Adv.
Synth. Catal. 2007, 349, 2454–2458; f) Z. Jiang, W. Ye, Y. Yang, C.-
H. Tan, Adv. Synth. Catal. 2008, 350, 2345–2351; g) Z. Jiang, Y. Pan,
Y. Zhao, T. Ma, R. Lee, Y. Yang, K.-W. Huang, M. W. Wong, C.-H.
Tan, Angew. Chem. 2009, 121, 3681–3685; Angew. Chem. Int. Ed.
2009, 48, 3627–3631; our previous study relating to guanidine-amide
promoted reactions, see: h) Z. P. Yu, X. H. Liu, L. Zhou, L. L. Lin,
X. M. Feng, Angew. Chem. 2009, 121, 5297–5300; Angew. Chem.
Int. Ed. 2009, 48, 5195–5198; i) X. H. Liu, L. L. Lin, X. M. Feng,
Chem. Commun. 2009, 45, 6145–6158; j) S. X. Dong, X. H. Liu,
X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin, X. M. Feng, J.
Am. Chem. Soc. 2010, 132, 10650–10651; k) S. X. Dong, X. H. Liu,
Y. L. Zhang, L. L. Lin, X. M. Feng, Org. Lett. 2011, 13, 5060–5063;
l) X. H. Chen, S. X. Dong, Z. Qiao, Y. Zhu, M. S. Xie, L. L. Lin,
X. H. Liu, X. M. Feng, Chem. Eur. J. 2011, 17, 2583–2586; m) Y.
Yang, S. X. Dong, X. H. Liu, L. L. Lin, X. M. Feng, Chem.
Commun. 2012, 48, 5040–5042.
[8] For reviews on counterion effects, see: a) J. Lacour, V. Hebbe-Viton,
Chem. Soc. Rev. 2003, 32, 373–382; b) A. Macchioni, Chem. Rev.
2005, 105, 2039–2073; c) J. Lacour, D. Moraleda, Chem. Commun.
2009, 7073–7089; d) M. Rueping, R. M. Koenigs, Atodiresei, Chem.
Eur. J. 2010, 16, 9350–9365; e) I. Krossing, I. Raabe, Angew. Chem.
2004, 116, 2116–2142; Angew. Chem. Int. Ed. 2004, 43, 2066–2090;
for a selection of examples of counteranion effects, see: f) M. C.
Dobish, J. N. Johnston, J. Am. Chem. Soc. 2012, 134, 6068–6071;
g) S. Kainz, A. Brinkmann, W. Leitner, A. Pfaltz, J. Am. Chem. Soc.
1999, 121, 6421–6429; h) S. P. Smidt, N. Zimmermann, M. Studer,
A. Pfaltz, Chem. Eur. J. 2004, 10, 4685–4693; i) C. Li, J. Xiao, J. Am.
Chem. Soc. 2008, 130, 13208–13209; j) M. Nandi, J. Jin, T. V. Rajan
sieves (20 mg), N-bromosuccinimide (NBS; 19.6 mg, 0.11 mmol) and sub-
strate 2a (47.7 mg, 0.1 mmol) were stirred in a dry reaction tube at
À208C for 0.5 h. Subsequently, CH2Cl2 (0.15 mL; cooled at À208C) was
added. The reaction was stirred at À208C for 24 h. The mixture was di-
rectly purified by column chromatography on silica gel (petroleum ether/
ethyl acetate=8:1) to afford 4a (48.8 mg, 88% yield) as a white solid.
Acknowledgements
We thank the National Natural Science Foundation of China (Nos.
21021001, 21072133, and 21222206), National Basic Research Program of
China (973 Program: No. 2010CB833300), and the Ministry of Education
of China (NCET-11-0345) for financial support.
Keywords: asymmetric
synthesis
·
bromination
·
dihydroquinolones · guanidines · Michael addition
[1] For reviews, see: a) A. S. Wagman, M. P. Wentlsnd, in Comprehen-
sive Medicinal Chemistry II, Vol. 117 (Eds.: J. B. Taylor, D. J. Trig-
gle), Elsevier, Amsterdam, 2006, pp 567–597; b) V. Sridharan, P. A.
Suryavanshi, J. C. Menendz, Chem. Rev. 2011, 111, 7157–7259; for
selected examples, see: c) U. Beifuss, G. Feder, T. Bes, I. Uson, Syn-
lett 1998, 6, 649–651; d) W. Chen, A. L. Egar, M. B. Hursthouse,
K. M. A. Malik, J. E. Mathews, S. M. Roberts, Tetrahedron Lett.
1998, 39, 8495–8498; e) Y. Xia, Z. Y. Yang, P. Xia, K. F. Bastow, Y.
Tachibana, S. C. Kuo, E. Hamel, T. Hackl, K. H. Lee, J. Med. Chem.
1998, 41, 1155–1162; f) S. X. Zhang, J. Feng, S. C. Kuo, A. Brossi, E.
Hamel, A. Tropsha, K. H. Lee, J. Med. Chem. 2000, 43, 167–176.
[2] For selected examples, see: a) R. Shintani, T. Yamagami, T. Kimura,
Chem. Eur. J. 2012, 18, 15922 – 15926
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
15925