ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Palladium(II)-Catalyzed
Enantioselective Synthesis of
r‑(Trifluoromethyl)arylmethylamines
Thomas Johnson and Mark Lautens*
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, Canada M5S 3H6
Received July 3, 2013
ABSTRACT
Trifluoromethylacetaldimines, generated in situ from the corresponding N,O-acetals, undergo 1,2-addition of arylboroxines under palladium(II)
catalysis to generate a variety of R-(trifluoromethyl)arylmethylamines with good to high enantioselectivity (up to 97% ee). The pyridine-oxazolidine
(PyOX) class of ligands was found to be particularly suitable for this transformation, which proceeds without exclusion of ambient air and moisture.
The transition-metal-catalyzed addition of organoboron
reagents to imines has emerged as a versatile method for the
preparation of diversely substituted amines in an enantio-
selective fashion.1 Among the catalytic systems capable
of effecting this transformation, complexes of rhodium(I)
with chiral dienes or phosphorus-based ligands have most
often been employed.1,2 In comparison, there are few reports
featuring the use of the less expensive palladium(II) as the
catalyst for this transformation.3
In view of the prevalence of organofluorine com-
pounds in medicinal chemistry, as well as the occurrence
of R-(trifluoromethyl)amines in several biologically active
molecules,4 we sought to develop an enantioselective
method for the synthesis of this class of compounds.
Herein, we report that readily available N,O-acetals of
trifluoroacetaldehyde react with arylboroxines and a
Pd(II)/(S)-PyOX complex to afford enantioenriched sec-
ondary amines.
Much recent interest in trifluoromethylated amines
can be associated with their use as amide bond isosteres,
with a recent report of a cathepsin K inhibitor drug
candidate.5 Previous reports on the asymmetric synthesis
of R-(trifluoromethyl)amines are in the fields of catalytic
hydrogenation of imines,6 cinchona alkaloid-catalyzed
isomerization of trifluoromethylated imines,7 and nucleophilic
(4) (a) Lim, J.; Taoka, B.; Otte, R. D.; Spencer, K.; Dinsmore, C. J.;
Altman, M. D.; Chan, G.; Rosenstein, C.; Sharma, S.; Su, H.-P.;
Szewczak, A. A.; Xu, L.; Yin, H.; Zugay-Murphy, J.; Marshall, C. G.;
Young, J. R. J. Med. Chem. 2011, 54, 7334–7349. (b) O’Shea, P. D.;
Chen, C.-Y.; Gauvreau, D.; Gosselin, F.; Hughes, G.; Nadeau, C.;
Volante, R. P. J. Org. Chem. 2009, 74, 1605–1610. (c) Zhang, N.; Ayral-
Kaloustian, S.; Nguyen, T.; Afragola, J.; Hernandez, R.; Lucas, J.;
Gibbons, J.; Beyer, C. J. Med. Chem. 2007, 50, 319–327. (d) Grunewald,
G. L.; Caldwell, T. M.; Li, Q.; Criscione, K. R. J. Med. Chem. 1999, 42,
3315–3323.
(5) Black, W. C.; Bayly, C. I.; Davis, D. E.; Desmarais, S.; Falgueyret,
J. P.; Leger, S.; Li, C. S.; Masse, F.; McKay, D. J.; Palmer, J. T.; Percival,
M. D.; Robichaud, J.; Tsou, N.; Zamboni, R. Bioorg. Med. Chem. Lett.
2005, 15, 4741–4744.
(6) (a) Chen, M. W.; Duan, Y.; Chen, Q.-A.; Wang, D.-S.; Yu, C.-B.;
Zhou, Y. G. Org. Lett. 2010, 12, 5075–5077. (b) Henseler, A.; Kato, M.;
Mori, K.; Akiyama, T. Angew. Chem., Int. Ed. 2011, 50, 8180–8183. (c)
Gosselin, F.; O’Shea, P. D.; Roy, S.; Reamer, R. A.; Chen, C.; Volante,
R. P. Org. Lett. 2006, 7, 355–358.
(7) (a) Liu, M.; Li, J.; Xiao, X.; Xie, Y.; Shi, Y. Chem. Commun. 2013,
49, 1404–1406. (b) Wu, Y.; Deng, L. J. Am. Chem. Soc. 2012, 134, 14334–
14337.
(1) (a) Ramadhar, T. R.; Batey, R. A. In Boronic Acids: Preparation
and Applications in Organic Synthesis, Medicines and Materials; Hall,
D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2011; Vol. 2, pp 427ꢀ477. (b)
Sun, Y.-W.; Zhu, P.-L.; Xu, Q.; Shi, M. RSC Adv. 2013, 3, 3153–3168.
(c) Marques, C. S.; Burke, A. J. ChemCatChem 2011, 3, 635–645.
(2) Selected recent examples: (a) Jung, H. H.; Buesking, A. W.;
Ellman, J. A. J. Org. Chem. 2012, 77, 8541–8548. (b) Nishimura, T.;
Noishiki, A.; Tsui, G. C.; Hayashi, T. J. Am. Chem. Soc. 2012, 134,
5056–5059.
(3) (a) Chen, J.; Lu, X.; Lou, W.; Ye, Y.; Jiang, H.; Zeng, W. J. Org.
Chem. 2012, 77, 8541–8548. (b) Marques, C. S.; Burke, A. J. Eur. J. Org.
Chem. 2010, 9, 1639–1643. (c) Dai, H.; Lu, X. Tetrahedron Lett. 2009, 50,
3478–3481. (d) Ma, G. N.; Zhang, T.; Shi, M. Org. Lett. 2009, 11, 875–
878. (e) Dai, H.; Lu, X. Org. Lett. 2007, 9, 3077–3080.
r
10.1021/ol401862g
XXXX American Chemical Society