Communication
ChemComm
Notes and references
1 (a) J. M. Castro, S. Salido, J. Altarejos, M. Nogueras and A. Sanchez,
Tetrahedron, 2002, 58, 5941; (b) M. J. Uddin, S. Kokubo, K. Ueda,
K. Suenaga and D. Uemura, J. Nat. Prod., 2001, 64, 1169; (c) K. F. Nielsen,
M. Mansson, C. Rank, J. C. Frisvad and T. O. Larsen, J. Nat. Prod., 2011,
74, 2338; (d) Y.-Q. Chen, Y. H. Shen, Y. Q. Su, L.-Y. Kong and
W. D. Zhang, Chem. Biodiversity, 2009, 6, 779.
2 (a) Y. Hayashi, H. Gotoh, T. Tamura, H. Yamaguchi, R. Masui and
M. Shoji, J. Am. Chem. Soc., 2005, 127, 16028; (b) Q. Liu and T. Rovis,
J. Am. Chem. Soc., 2006, 128, 2552; (c) N. T. Vo, R. D. M. Pace,
F. O’Har and M. Gaunt, J. Am. Chem. Soc., 2008, 130, 404; (d) Q. Gu
and S.-L. You, Chem. Sci., 2011, 2, 1519; (e) M.-Q. Jia and S.-L. You,
Chem. Commun., 2012, 48, 6363; ( f ) S. Takizawa, T. M.-N. Nguyen,
A. Grossmann, D. Enders and H. Sasai, Angew. Chem., Int. Ed., 2012,
51, 5423; (g) W. Wu, X. Li, H. Huang, X. Yuan, J. Lu, K. Zhu and J. Ye,
´
Angew. Chem., Int. Ed., 2013, 52, 1743; (h) C. Martın-Santos, C. Jarava-
´
Barrera, S. del Pozo, A. Parra, S. Dıaz-Tendero, R. Mas-Balleste and
S. Cabrera, Angew. Chem., Int. Ed., 2014, 53, 8184; (i) W. Yao, X. Dou,
S. Wen, J. Wu, J. J. Vittal and Y. Lu, Nat. Commun., 2016, 7, 13024.
3 (a) K. K. Gollapelli, S. Donikela, N. Manjula and R. Chegondi, ACS Catal.,
2018, 8, 1440; (b) Z.-T. He, B. Tian, Y. Fukui, X. Tong, P. Tian and G.-Q.
Lin, Angew. Chem., Int. Ed., 2013, 52, 5314; (c) J. Keilitz, S. G. Newman and
M. Lautens, Org. Lett., 2013, 15, 1148; (d) C.-L. Duan, Y.-X. Tan, J.-L.
Zhang, S. Yang, H.-Q. Dong, P. Tian and G.-Q. Lin, Org. Lett., 2019,
21, 1690.
Scheme 4 Proposed mechanism.
4 (a) A. S. Murthy, S. Donikela, C. S. Reddy and R. Chegondi, J. Org.
Chem., 2015, 80, 5566; (b) K. Takenaka, S. C. Mohanta and H. Sasai,
Angew. Chem., Int. Ed., 2014, 53, 4675; (c) R. Tello-Aburto and
A. M. Harned, Org. Lett., 2009, 11, 3998; (d) K. Kondo, M. Sodeoka,
M. Mori and M. Shibasaki, Tetrahedron Lett., 1993, 34, 4219.
5 (a) C. Clarke, C. A. Incerti-Pradillos and H. W. Lam, J. Am. Chem.
Soc., 2016, 138, 8068; (b) R. Kumar, Y. Hoshimoto, E. Tamai,
M. Ohashi and S. Ogoshi, Nat. Commun., 2017, 8, 32.
6 P. Liu, Y. Fukui, P. Tian, Z.-T. He, C.-Y. Sun, N.-Y. Wu and G.-Q. Lin,
J. Am. Chem. Soc., 2013, 135, 11700.
7 (a) R. Jana, T. P. Pathak and M. S. Sigman, Chem. Rev., 2011,
111, 1417; (b) G. Evano, N. Blanchard and M. Toumi, Chem. Rev.,
2008, 108, 3054; (c) K. C. Nicolaou, P. G. Bulger and D. Sarlah,
Angew. Chem., Int. Ed., 2005, 44, 4442.
8 D. A. Petrone, J. Ye and M. Lautens, Chem. Rev., 2016, 116, 8003.
9 (a) J. Derosa, A. L. Cantu, M. N. Boulous, M. L. O’Duill, J. L. Turnbull,
Z. Liu, D. M. De La Torre and K. M. Engle, J. Am. Chem. Soc., 2017,
139, 5183; (b) G. Zhu and Z. Zhang, J. Org. Chem., 2005, 70, 3339;
(c) X.-C. Huang, F. Wang, Y. Liang and J.-H. Li, Org. Lett., 2009, 11, 1139;
(d) S. Ma and X. Lu, J. Org. Chem., 1991, 56, 5120; (e) D. Chen, Y. Cao,
Z. Yuan, H. Cai, R. Zheng, L. Kong and G. Zhu, J. Org. Chem., 2011,
76, 4071; ( f ) P. Zhou, M. Zheng, H. Jiang, X. Li and C. Qi, J. Org. Chem.,
2011, 76, 4759; (g) G. Yin and G. Liu, Angew. Chem., Int. Ed., 2008,
47, 5442; (h) R. Shukla, K. Pal and C. M. R. Volla, Chem. – Asian. J., 2018,
13, 2435.
10 (a) Z. Zhang, W. Wu, J. Liao, J. Li and H. Jiang, Chem. – Eur. J., 2015,
21, 6708; (b) L. Huang, Q. Wang, W. Wu and H. Jiang, Adv. Synth.
Catal., 2014, 356, 1949; (c) Z. Zhang, L. Ouyang, W. Wu, J. Li,
Z. Zhang and H. Zhang, J. Org. Chem., 2014, 79, 10734; (d) S. Ye,
K. Gao, H. Zhou, X. Yang and J. Wu, Chem. Commun., 2009, 5406;
(e) Y. Liang, S. Tang, X.-D. Zhang, L.-Q. Mao and J.-H. Li, Org. Lett.,
2006, 8, 3017; ( f ) S. Ma, B. Wu, X. Jiang and Z. Zhao, J. Org. Chem.,
2005, 70, 2568; (g) K. Takenaka, S. Hashimoto, S. Takizawa and
H. Sasai, Adv. Synth. Catal., 2011, 353, 1067.
On the basis of our mechanistic studies, a plausible mechanism
for the Pd-catalyzed dihalogenation of cyclohexadienones is
depicted (Scheme 4). Initial coordination of Pd(II)-salt with the
alkyne and alkene units of 1 forms intermediate B. Regioselective
cis-halopalladation of the alkyne would lead to the formation of
vinylpalladium(II) species C. Intramolecular syn-migratory insertion
with the less-substituted double bond would form the palladium-
enolate D. Nucleophilic attack of a halide ion on rather electrophilic
oxa-p-allyl intermediate E from the back side affords 2 and Pd(0).
Re-oxidation of Pd(0) with CuCl2 generates Pd(II)-salt and completes
the catalytic cycle.
In conclusion, we have developed a widely applicable Pd-
catalyzed cascade dihalogenation of alkyne-tethered cyclo-
hexadienones using CuX2 as the halide source. The protocol
was highly regio- and diastereoselective affording densely
functionalized cis-hydrobenzofuranone derivatives with three
stereocenters. Key control experiments and mechanistic studies
revealed the involvement of an unusual electrophilic palladium
enolate illustrating Umpolung behaviour. The practical utility
of cascade cyclization has been further demonstrated with the
gram scale reaction and further functionalization of these
derivatives into other useful compounds.
This work is supported by SERB, India (EMR/2015/002047).
A. S. and R. K. S. would like to thank the Council of Scientific &
Industrial Research (CSIR) and University Grants Commission
(UGC) respectively for the fellowship.
11 (a) A. Nair, S. Kumar and C. M. R. Volla, Adv. Synth. Catal., 2019,
DOI: 10.1002/adsc.201900874; (b) G. Sontakke, K. Pal and
C. M. R. Volla, J. Org. Chem., 2019, 84, 12198.
12 B. M. Trost and M. L. Crawley, Chem. Rev., 2003, 103, 2921.
13 E. M. Kosower, W. J. Cole, G. S. Wu, D. E. Cardy and G. Meisters,
J. Org. Chem., 1963, 28, 630.
Conflicts of interest
There are no conflicts to declare.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13442--13445 | 13445