Paper
Green Chemistry
2H), 1.73–1.62 (m, 2H), 1.46–1.38 (m, 2H), 0.95 (t, J = 7.8 Hz,
3H). 13C NMR (100 MHz, CDCl3) δ (ppm): 165.1, 162.6, 154.1,
135.2, 116.1, 84.9, 80.6, 65.9, 30.4, 19.0, 13.6; EI-MS,
m/z (%):147.15 (100), 220.15 (5) [M+]; HRMS (ESI): C13H13FO2Na
for [M + Na]+ calculated 243.0792, found 243.0786.
(f) L.-N. He, Z.-Z. Yang, A.-H. Liu and J. Gao, in Advances in
CO2 Conversion and Utilization, ed. Y. Hu, ACS, 2010, ch. 6,
vol. 1056, pp. 77–101; (g) M. Cokoja, C. Bruckmeier,
B. Rieger, W. A. Herrmann and F. E. Kühn, Angew. Chem.,
Int. Ed., 2011, 50, 8510–8537.
Compound 3ia. Yellow oil; 1H NMR (400 MHz, CDCl3) δ
(ppm): 7.51 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 4.23 (t,
J = 6.7 Hz, 2H), 1.71–1.66 (m, 2H), 1.46–1.40 (m, 2H), 0.95 (t, J =
7.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ (ppm): 154.0, 136.9,
134.1, 129.0, 118.1, 84.7, 81.5, 66.0, 30.4, 19.0, 13.6; EI-MS, m/z
(%): 163.10 (100), 236.10 (7) [M+]; HRMS (ESI): C13H13O2ClNa
for [M + Na]+ calculated 259.0496, found 259.0494.
2 (a) T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007,
107, 2365–2387; (b) D. J. Darensbourg, Chem. Rev., 2007,
107, 2388–2410; (c) T. Sakakura and K. Kohno, Chem.
Commun., 2009, 1312–1330; (d) R. W. Dorner, D. R. Hardy,
F. W. Williams and H. D. Willauer, Energy Environ. Sci.,
2010, 3, 884–890; (e) M. North, R. Pasquale and C. Young,
Green Chem., 2010, 12, 1514–1539; (f) A.-H. Liu, Y.-N. Li
and L.-N. He, Pure Appl. Chem., 2012, 84, 581–602;
(g) X.-B. Lu, W.-M. Ren and G.-P. Wu, Acc. Chem. Res., 2012,
45, 1721–1735.
3 (a) A. Correa and R. Martín, Angew. Chem., Int. Ed., 2009,
48, 6201–6204; (b) K. Huang, C.-L. Sun and Z.-J. Shi, Chem.
Soc. Rev., 2011, 40, 2435–2452; (c) I. I. F. Boogaerts and
S. P. Nolan, Chem. Commun., 2011, 47, 3021–3024.
4 N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo,
G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah and
P. Fennell, Energy Environ. Sci., 2010, 3, 1645–1669.
5 (a) Z.-Z. Yang, Y.-N. Zhao and L.-N. He, RSC Adv., 2011, 1,
545–567; (b) Z.-Z. Yang, L.-N. He, J. Gao, A.-H. Liu and
B. Yu, Energy Environ. Sci., 2012, 5, 6602–6639;
(c) P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen,
P. Zapp, R. Bongartz, A. Schreiber and T. E. Muller, Energy
Environ. Sci., 2012, 5, 7281–7305.
Compound 3ja. Yellow oil; 1H NMR (400 MHz, CDCl3) δ
(ppm): 7.52 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 4.23 (t,
J = 6.7 Hz, 2H), 1.73–1.66 (m, 2H), 1.48–1.38 (m, 2H), 0.95 (t,
J = 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ (ppm): 154.0,
134.2, 131.9, 125.3, 118.6, 84.7, 81.6, 66.1, 30.4, 19.0, 13.6;
EI-MS, m/z (%):180.00 (100), 280.10 (8) [M+].
Compound 3ka. Brown oil; 1H NMR (400 MHz, CDCl3) δ
(ppm): 7.48–7.45 (m, 2H), 7.04 (s, 1H), 4.23 (t, J = 6.6 Hz, 2H),
1.71–1.67 (m, 2H), 1.46–1.40 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).
13C NMR (100 MHz, CDCl3) δ (ppm): 154.0, 136.4, 131.0, 127.5,
119.4, 84.9, 80.0, 65.9, 30.4, 19.0, 13.6; EI-MS, m/z (%): 108.19
(100), 207.90 (14) [M+].
Compound 3la. Yellow oil; 1H NMR (400 MHz, CDCl3) δ
(ppm): 4.13 (t, J = 6.7 Hz, 2H), 2.30 (t, J = 7.2 Hz, 2H),
1.65–1.53 (m, 4H), 1.40–1.25 (m, 8H), 0.93–0.85 (m, 6H); 13C
NMR (100 MHz, CDCl3) δ (ppm): 154.0, 89.4, 73.1, 65.5, 31.1,
30.4, 28.5, 27.4, 22.4, 19.0, 18.6, 13.9, 13.6; EI-MS, m/z (%):
67.19 (100), 211.02 (46) [M+].
6 L. J. Gooßen, N. Rodriguez and K. Gooßen, Angew. Chem.,
Int. Ed., 2008, 47, 3100–3120.
7 (a) W. I. Dzik, P. P. Lange and L. J. Gooßen, Chem. Sci.,
2012, 3, 2671–2678; (b) N. Rodriguez and L. J. Goossen,
Chem. Soc. Rev., 2011, 40, 5030–5048; (c) J. Cornella and
I. Larrosa, Synthesis, 2012, 653–676.
8 (a) W.-Z. Zhang and X.-B. Lu, Chin. J. Catal., 2012, 33, 745–
756; (b) Y. Tsuji and T. Fujihara, Chem. Commun., 2012, 48,
9956–9964.
1
Compound 3ma. Colourless oil; H NMR (400 MHz, CDCl3)
δ (ppm): 4.14 (t, J = 6.8 Hz, 2H), 1.67–1.60 (m, 2H), 1.43–1.36
(m, 2H), 1.27 (s, 9H), 0.93 (t, J = 7.4 Hz, 3H); 13C NMR
(100 MHz, CDCl3) δ (ppm): 154.2, 96.3, 71.8, 65.6, 30.4, 29.9,
27.5, 19.0, 13.6; HRMS (ESI): C15H18O2Na for [M + Na]+ calcu-
lated 205.1199, found 205.1197.
9 (a) M. Shi and K. M. Nicholas, J. Am. Chem. Soc., 1997, 119,
5057–5058; (b) R. Johansson and O. F. Wendt, Dalton
Trans., 2007, 488–492.
Acknowledgements
We are grateful to the National Natural Science Foundation of 10 (a) C. S. Yeung and V. M. Dong, J. Am. Chem. Soc., 2008,
China (no. 21172125, 21121002), the “111” Project of Ministry
of Education of China (Project no. B06005), and Tianjin Co-
Innovation Center of Chemical Science and Engineering for
financial support. We also would like to thank Prof. Ao Yu for
his constructive discussion on theoretical calculations.
130, 7826–7827; (b) H. Ochiai, M. Jang, K. Hirano,
H. Yorimitsu and K. Oshima, Org. Lett., 2008, 10, 2681–
2683; (c) K. Kobayashi and Y. Kondo, Org. Lett., 2009, 11,
2035–2037.
11 (a) X. Zhang, W.-Z. Zhang, L.-L. Shi, C.-X. Guo, L.-L. Zhang
and X.-B. Lu, Chem. Commun., 2012, 48, 6292–6294;
(b) K. Ukai, M. Aoki, J. Takaya and N. Iwasawa, J. Am. Chem.
Soc., 2006, 128, 8706–8707; (c) J. Takaya, S. Tadami, K. Ukai
and N. Iwasawa, Org. Lett., 2008, 10, 2697–2700;
(d) T. Ohishi, M. Nishiura and Z. Hou, Angew. Chem., Int.
Ed., 2008, 47, 5792–5795.
Notes and references
1 (a) X. Yin and J. R. Moss, Coord. Chem. Rev., 1999, 181, 27–
60; (b) J. Louie, Curr. Org. Chem., 2005, 9, 605–623;
(c) S. N. Riduan and Y. Zhang, Dalton Trans., 2010, 39, 12 (a) L. Ackermann, Angew. Chem., Int. Ed., 2011, 50, 3842–
3347–3357; (d) D. J. Darensbourg, Inorg. Chem., 2010, 49,
10765–10780; (e) M. Mikkelsen, M. Jorgensen and
F. C. Krebs, Energy Environ. Sci., 2010, 3, 43–81;
3844; (b) L. Zhang, J. Cheng, T. Ohishi and Z. Hou, Angew.
Chem., Int. Ed., 2010, 49, 8670–8673; (c) I. I. F. Boogaerts
and S. P. Nolan, J. Am. Chem. Soc., 2010, 132, 8858–8859;
Green Chem.
This journal is © The Royal Society of Chemistry 2013