B. Schweitzer-Chaput, M. Klussmann
SHORT COMMUNICATION
products, to Markus Kochius for high-temperature NMR measure-
ments, and to Prof. Benjamin List for financial support and helpful
discussions.
Experimental Section
Warning: Although we never experienced any problem in working
with or handling the compounds described in this work, pre-
cautions should be taken when working with peroxides. In particu-
lar, exposure of the neat peroxides to heat or mixing them with
metals or metal salts should be avoided as much as possible. Per-
forming the thermal synthesis of the peroxides and concentrating
their solutions behind a blast shield is recommended.
[1] a) C.-J. Li, Acc. Chem. Res. 2009, 42, 335–344; b) C. J. Scheuer-
mann, Chem. Asian J. 2010, 5, 436–451; c) M. Klussmann, D.
Sureshkumar, Synthesis 2011, 353–369; d) C. S. Yeung, V. M.
Dong, Chem. Rev. 2011, 111, 1215–1292; e) J. Yamaguchi,
A. D. Yamaguchi, K. Itami, Angew. Chem. 2012, 124, 9092;
Angew. Chem. Int. Ed. 2012, 51, 8960–9009.
[2] P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301–312.
[3] a) K. M. Jones, M. Klussmann, Synlett 2012, 23, 159–162; b)
E. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W.
Maes, Chem. Eur. J. 2012, 18, 10092–10142; c) K. R. Campos,
Chem. Soc. Rev. 2007, 36, 1069–1084.
General Procedure for the Synthesis of tert-Butyl Peroxides from
Tetrahydroisoquinolines: A 4-mL screw cap vial was charged with
the corresponding tetrahydroisoquinoline (1 mmol) and a solution
of tBuOOH (5.5 m in decane, 540 μL, 3 mmol) was added. The mix-
ture was stirred at 105 °C by using an aluminum hotplate for the
indicated time (see Table 2). After cooling, the resulting mixture
was directly subjected to flash chromatography on silica gel to af-
ford corresponding peroxide 2.
[4] a) S.-I. Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am.
Chem. Soc. 2003, 125, 15312–15313; b) S.-I. Murahashi, N. Ko-
miya, H. Terai, Angew. Chem. 2005, 117, 7091; Angew. Chem.
Int. Ed. 2005, 44, 6931–6933.
Benzyl
1-(tert-Butylperoxy)-3,4-dihydroisoquinoline-2(1H)-carb-
oxylate (2a): 1H NMR (400 MHz, [D6]DMSO, 80 °C): δ = 7.43–
7.17 (m, 9 H), 6.59 (s, 1 H), 5.25–5.10 (m, 2 H), 4.12–3.98 (m, 1
H), 3.54–3.36 (m, 1 H), 2.88–2.77 (m, 2 H), 1.16 (s, 9 H) ppm. 13C
NMR (100 MHz, [D6]DMSO, 80 °C): δ = 154.26 (q), 136.31 (Ar
q), 135.54 (Ar q), 129.81 (Ar q), 128.59 (ArH), 128.52 (ArH),
128.12 (ArH), 127.82 (ArH), 127.33 (ArH), 127.11 (ArH), 125.72
(ArH), 83.97 (CH), 79.54 (q), 66.17 (CH2), 27.08 (CH2), 25.80
(CH3) ppm. MS (EI): m/z (%) = 355 (0.03), 266 (30), 222 (41), 91
(100). HRMS (ESI): calcd. for [C21H25NO4Na]+ [M + Na+]
378.167791; found 378.167577
[5] a) Z. Li, C.-J. Li, J. Am. Chem. Soc. 2004, 126, 11810–11811;
b) Z. Li, D. S. Bohle, C.-J. Li, Proc. Natl. Acad. Sci. USA 2006,
103, 8928–8933.
[6] For representative examples, see: a) Z. Li, C.-J. Li, Org. Lett.
2004, 6, 4997–4999; b) A. J. Catino, J. M. Nichols, B. J. Nettles,
M. P. Doyle, J. Am. Chem. Soc. 2006, 128, 5648–5649; c) O.
Baslé, C.-J. Li, Green Chem. 2007, 9, 1047–1050; d) A. S.-K.
Tsang, M. H. Todd, Tetrahedron Lett. 2009, 50, 1199–1202; e)
S. Singhal, S. L. Jain, B. Sain, Chem. Commun. 2009, 2371–
2372; f) W. Han, A. R. Ofial, Chem. Commun. 2009, 5024–
5026; g) A. Sud, D. Sureshkumar, M. Klussmann, Chem. Com-
mun. 2009, 3169–3171; h) D. Sureshkumar, A. Sud, M.
Klussmann, Synlett 2009, 1558–1561; i) L. Chu, F.-L. Qing,
Chem. Commun. 2010, 46, 6285–6287; j) A. G. Condie, J. C.
González-Gómez, C. R. J. Stephenson, J. Am. Chem. Soc.
2010, 132, 1464–1465; k) J. H. Schrittwieser, V. Resch, J. H.
Sattler, W.-D. Lienhart, K. Durchschein, A. Winkler, K.
Gruber, P. Macheroux, W. Kroutil, Angew. Chem. 2011, 123,
1100; Angew. Chem. Int. Ed. 2011, 50, 1068–1071; l) D. P. Hari,
B. König, Org. Lett. 2011, 13, 3852–3855; m) M. Rueping, C.
Vila, R. M. Koenigs, K. Poscharny, D. C. Fabry, Chem. Com-
mun. 2011, 47, 2360–2362; n) R. A. Kumar, G. Saidulu, K. R.
Prasad, G. S. Kumar, B. Sridhar, K. R. Reddy, Adv. Synth. Ca-
tal. 2012, 354, 2985–2991.
Synthesis of 6a as a Representative Coupling Procedure: In a 4-mL
screw cap vial, peroxide 2a (88.7 mg, 0.25 mmol) was dissolved in
AcOH (1 mL). 1,3,5-Trimethoxybenzene (42 mg, 0.25 mmol) was
then added followed by MsOH (1.77 μL, 0.025 mmol). The mixture
was stirred at room temperature for 30 s, and the whole reaction
mixture was then subjected to flash chromatography (elution with
pentane/AcOEt, 85:15) on silica gel to afford coupling product 6a
(89 mg, 83%) as a clear oil, which gave a white solid upon standing
at room temperature or cooling.
Benzyl 1-(2,4,6-Trimethoxyphenyl)-3,4-dihydroisoquinoline-2(1H)-
carboxylate (6a): 1H NMR (400 MHz, [D6]DMSO, 80 °C): δ =
7.31–7.22 (m, 3 H), 7.17–7.10 (m, 3 H), 7.06 (tt, J = 2, 7.2 Hz, 1
H), 7.00 (td, J = 2, 7.7 Hz, 1 H), 6.69 (d, J = 7.7 Hz, 1 H), 6.46 (s,
1 H), 6.19 (s, 2 H), 5.05–4.95 (m, 2 H), 4.24 (ddd, J = 3, 5, 12.6 Hz,
1 H), 3.77 (s, 3 H), 3.58–3.49 (m, 7 H), 2.90–2.75 (m, 2 H) ppm.
13C NMR (100 MHz, [D6]DMSO, 80 °C): δ = 159.89 (Ar q), 158.41
(Ar q), 154.46 (q), 136.79 (Ar q), 136.53 (Ar q), 134.08 (Ar q),
127.67 (ArH), 127.52 (ArH), 126.97 (ArH), 126.80 (ArH), 125.42
(ArH), 125.32 (ArH), 125.05 (ArH), 113.06 (Ar q), 91.62 (ArH),
65.59 (CH2), 55.33 (CH3), 54.81 (CH3), 48.75 (CH), 39.28 (CH2),
29.19 (CH2) ppm. MS (EI): m/z (%) = 433 (5), 342 (4), 298 (100),
91 (27). HRMS (ESI): calcd. for [C26H27NO5Na]+ [M + Na+]
456.178527; found 456.178146.
[7] a) A. S.-K. Tsang, P. Jensen, J. M. Hook, A. S. K. Hashmi,
M. H. Todd, Pure Appl. Chem. 2011, 83, 655–665; b) E. Boess,
D. Sureshkumar, A. Sud, C. Wirtz, C. Farès, M. Klussmann,
J. Am. Chem. Soc. 2011, 133, 8106–8109.
[8] M. Shamma, The Isoquinoline Alkaloids: Chemistry and Phar-
macology, Academic Press, New York, 1972, vol. 25.
[9] M. Ghobrial, K. Harhammer, M. D. Mihovilovic, M.
Schnürch, Chem. Commun. 2010, 46, 8836–8838.
[10] For representative examples, see: a) L. Zhao, C.-J. Li, Angew.
Chem. 2008, 120, 7183; Angew. Chem. Int. Ed. 2008, 47, 7075–
7078; b) C. Dubs, Y. Hamashima, N. Sasamoto, T. M. Seidel,
S. Suzuki, D. Hashizume, M. Sodeoka, J. Org. Chem. 2008, 73,
5859–5871; c) H. Richter, O. García Mancheño, Eur. J. Org.
Chem. 2010, 4460–4467; d) H. Richter, R. Fröhlich, C.-G. Dan-
iliuc, O. García Mancheño, Angew. Chem. 2012, 124, 8784; An-
gew. Chem. Int. Ed. 2012, 51, 8656–8660; e) M. Ghobrial, M.
Schnürch, M. D. Mihovilovic, J. Org. Chem. 2011, 76, 8781–
8793; f) E. Shirakawa, N. Uchiyama, T. Hayashi, J. Org. Chem.
2010, 76, 25–34; g) C. Dai, F. Meschini, J. M. R. Narayanam,
C. R. J. Stephenson, J. Org. Chem. 2012, 77, 4425–4431; h)
K. M. Jones, P. Karier, M. Klussmann, ChemCatChem 2012,
4, 51–54; i) T. Shono, Y. Matsumura, K. Tsubata, J. Am. Chem.
Soc. 1981, 103, 1172–1176; j) T. Naota, T. Nakato, S.-I. Murah-
ashi, Tetrahedron Lett. 1990, 31, 7475–7478; k) S.-I. Murah-
ashi, T. Naota, T. Kuwabara, T. Saito, H. Kumobayashi, S.
Akutagawa, J. Am. Chem. Soc. 1990, 112, 7820–7822; l) K. T.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, product characterization, further
details of the optimization studies, and copies of the 1H NMR and
13C NMR spectra.
Acknowledgments
The authors are grateful to the Deutsche Forschungsgemeinschaft
(DFG) for funding (Heisenberg scholarship to M. K., KL 2221/4-
1; KL 2221/3-1), to Corinna Schmitz for the synthesis of some
670
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 666–671