Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 4
DOI: 10.1039/C5OB01310K
COMMUNICATION
Journal Name
Chem. Eur. J. , 2014, 20, 5007-5012; (e) T.
P. Kee and T. D. Nixon, Top Curr Chem,
2003, 223, 45-65; (f) Q. Wu, J. Zhou, Z.
Yao, F. Xu and Q. Shen, J. Org. Chem. ,
O
O
P
O
OR
OR
O
OR
P
base/ catalyst free
H
P
OR
H
RO
O
toluene, 80 oC
OH
OR
O
3
2010, 75
Ramananarivo, A. Solhy, J. Sebti, A.
Smahi, M. Zahouily, J. Clark and S. Sebti,
,
7498-7501; (g) H. R.
2
1
H-bonding promoted
phosphoryl attack on
activated -CHO group
air
base free
toluene, 80 o
C
H
O
O
O
O
O
O
O
O
P
ACS Sustainable Chem. Eng. , 2013,
1,
OR
OR
P
OR
OR
OR
P
P
403-409; (h) D. Zhao and R. Wang, Chem.
Soc. Rev. , 2012, 41, 2095-2108; (i) B. Liu,
J.-F. Carpentier and Y. Sarazin, Chem. Eur.
J., 2012, 18, 13259-13264; (j) P. Merino,
E. Marqués-López and R. P. Herrera, Adv.
Synth. Catal. , 2008, 350, 1195-1208.
(a) S. Bhagat and A. K. Chakraborti, J.
Org. Chem., 2007, 72, 1263-1270; (b) G.
Keglevich and E. Bálint, Molecules 2012,
OR
OR
OR
OH
O2
OH
OH
OH
resonance
hybrid
O
O
O
O
O
O
O
O
O
O
O
OR
O
O
P
O
P
OR
OR
O
R
O
P
P
H
OR
OH
+
OR
OR
3
OH
OH2
O
O
DiOxaphosphetane
4
H2
(Isolated)
OR
Scheme 3. Plausible mechanistic scenario for synthesis of
and
3
17, 12821-12835; (c) D. Pettersen, M. Marcolini, L. Bernardi,
F. Fini, R. P. Herrera, V. Sgarzani and A. Ricci, J. Org. Chem.,
2006, 71, 6269-6272; (d) N. S. Zefirov and E. D. Matveeva,
Arkivoc 2008, (i), 1-17; (e) X. Zhou, D. Shang, Q. Zhang, L. Lin,
X. Liu and X. Feng, Org. Lett., 2009, 11, 1401-1404.
(a) R. U. Pokalwar, R. V. Hangarge, P. V. Maskeb and M. S.
Shingare, Arkivoc, 2006 (xi) 196-204; (b) K. U. M. Rao, C. S.
Sundar, S. S. Prasad, C. R. Rani and C. S. Reddy, Bull. Korean
Chem. Soc., 2011, 32, 3343-3347; (c) D. V. Patel, K. Rielly-
Gauvin and D. E. Ryono, Tetrahedron Lett. , 1990, 31, 5587-
5590; (d) N. S. Patil, G. B. Deshmukh, S. V. Patil, A. D. Bholay
and N. D. Gaikwad, Eur. J. Med. Chem., 2014, 83, 490-497; (e)
G. S. Reddy, C. SyamaSundar, S. S. Prasad, E. Dadapeer, C. N.
4
.
NMR and LC-MS analysis. Based on these observations, we presume
the generation of α-oxoester 4a from 3a through the
dioxaphosphetane intermediate (Figure 1).
4
On the basis of above results, the feasible pathway for formation of
3 and 4 was presented in Scheme 3. Through the assistance of H-
bonding due to 2-oxo group, the dialkyl H-phosphonate form shifts
towards more nucleophilic phosphite form. The phosphite 2 later
attacks 2-oxoaldehyde 1 generating desired product 3. Compound 3
on heating in toluene loses one proton that generates a resonance
stabilized carbanion. These carbanion later attacks molecular
oxygen that ultimately rearranges to dioxaphosphetane
intermediate and releases alkoxy nucleophile. Under in situ acidic
environment the dioxaphosphetane undergoes nucleophilic
displacement reaction to 4 through elimination of H2O and PO3R
molecules.
Raju and C. S. Reddy, Der Pharma Chemica, 2012, 4, 2208-
2213; (f) K. R. M. Naidu, K. S. Kumar, P. Arulselvan, C. B.
Reddy and O. Lasekan, Arch. Pharm. Chem. Life Sci. , 2012,
345, 957-963.
O. Seven, S. Polat-Cakir, M. S. Hossain, M. Emrullahoglu and
A. S. Demir, Tetrahedron, 2011, 67, 3464-3469.
(a) L. Gu, C. Jin and H. Zhang, New J. Chem., 2015, 39, 1579-
5
6
1582; (b) X. Li, C. Jin and L. Gu, J. Org. Chem. , 2015, 80
2443-2447.
,
7
8
9
(a) J. Guin, Q. Wang, M. v. Gemmeren and B. List, Angew.
Chem. Int. Ed., 2014, 53, 1-5; (b) V. Thottempudi and K.-H.
Chung, Bull. Korean Chem. Soc., 2008, 29, 1781-1783; (c) F.
Jahani, B. Zamenian, S. Khaksar and M. Tajbakhsh, Synthesis
2010, 19, 3315-3318.
(a) Z. Huang, K.-K. A. Wang, J. Lee and W. A. v. d. Donk,
Chem. Sci., 2015, 6, 1282-1287; (b) J. Gao, K.-S. Ju, X. Yu, J. E.
Velasquez, S. Mukherjee, Jaeheon Lee, C. Zhao, B. S. Evans, J.
R. Doroghazi, W. W. Metcalf and W. A. v. d. Donk, Angew.
Chem. Int. Ed. , 2014, 53, 1334-1337.
(a) C. G. Screttas, B. R. Steele, M. Micha-Screttas and G. A.
Heropoulos, Org. Lett., 2012, 14, 5680-5683; (b) C. Zhang, P.
Feng and N. Jiao, J. Am. Chem. Soc. , 2013, 135, 15257-
15262; (c) C. Zhang and N. Jiao, Org. Chem. Front., 2014, 1,
109-112.
Conclusions
In summary, we have developed efficient methods for the synthesis
of α-hydroxy-β-oxophosphonate and α-oxoester compounds. The
reaction presents simple and direct method compounds. The
reaction presents simple and direct method that justifies the
important role of 2-oxo group in activation/promoting the reaction
through H-bonding. In view of the broad functional group tolerance,
the ease of conducting such reactions, and the mild reaction
conditions, we envisage this protocol will be widely tailored in
synthetic chemistry. Further application towards aliphatic glyoxal is
in progress and will be disclosed in due course of time.
10 (a) Y. Nie, R. Xiao, Y. Xu and G. T. Montelione, Org. Biomol.
Chem., 2011, 4070-4078; (b) S. D. Burke and G. M. Sametz,
Org. Lett., 1999, , 71-74; (c) M. F. Elsebai, S. Kehraus, U.
Lindequist, F. Sasse, S. Shaaban, M. Gutschow, M. Josten, H.-
G. Sahle and G. M. Konig, Org. Biomol. Chem., 2011, , 802-
808; (d) D. J. Wardrop and W. Zhang, Tetrahedron Lett. ,
2002, 43, 5389-5391.
11 B. Eftekhari-Sis and M. Zirak, Chem. Rev. , 2015, 115, 151-
264.
9
1
Notes and references
9
1
2
(a) J. Stawinski and A. Kraszewski, Acc. Chem. Res. , 2002, 35
952-960; (b) A. Y. Rulev, RSC Adv., 2014 , 26002-26012; D.
Uraguchi, T. Ito and T. Ooi, J. Am. Chem. Soc., 2009, 131
3836-3837; (c) A. Kraszewski and J. Stawinski, Pure Appl.
Chem., 2007, 79, 2217-2227.
(a) A. Kraszewski and J. Stawinski, Pure Appl. Chem., 2007,
79, 2217-2227; (b) J. P. Abell and H. Yamamoto, J. Am. Chem.
Soc., 2008 130, 10521-10523; (c) D. Semenzin, G. Etemad-
Moghadam, D. Albouy, O. Diallo and M. Koenig, J. Org. Chem.
, 1997, 62, 2414-2422; (d) T. Soeta, S. M. uzaki and Y. U. ji,
,
4
,
12 (a) M. Drescher, Y.-F. Li and F. Hammerschmidt, Tetrahedron
1995, 51, 4933-4946; (b) C. Liu, Y. Zhang, Q. Qian, D. Yuan
and Y. Yao, Org. Lett. , 2014, 16, 6172-6175.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins