Journal of Medicinal Chemistry
Article
(12) Boss, C.; Brisbare-Roch, C.; Jenck, F. Biomedical application of
orexin/hypocretin receptor ligands in neuroscience. J. Med. Chem.
2009, 52, 891−903.
diisopropyl azodicarboxylate; DIPEA, N,N-diisopropylethyl-
amine; DMF, N,N-dimethylformamide; DMSO, dimethyl
sulfoxide; DPM, disintegrations per minute; EGTA, ethylene
glycol bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid; EOB,
end of bombardment; EOS, end of synthesis; ESI-MS,
electrospray ionization mass spectra; FAB-MS, fast atom
bombardment mass spectra; FOV, field of view; FR, flux
ratio; fwhm, full-width at half-maximum; GPCR, G-protein-
coupled receptor; HATU, N,N,N′,N′-tetramethyl-O-(7-azaben-
zotriazol-1-yl)uronium hexafluorophosphate; HEPES, 4-(2-
hydroxyethyl)-1-piperazinethanesulfonic acid; HIP, hippocam-
pus; HOBt, 1-hydroxybenzotriazole monohydrate; HPLC,
high-performance liquid chromatography; HRMS, high-reso-
lution mass spectra; % ID/mL, percentage of injected
radioligand dose per unit volume of tissue; Kd, dissociation
constant; Ki, inhibition constant; MDR1, multidrug resistance
protein 1; MOM, methoxymethyl; MPFC, medial prefrontal
cortex; MRI, magnetic resonance imaging; NaHMDS, sodium
hexamethyldisilazane; OXR, orexin receptor; OX1R, orexin-1
receptor; OX2R, orexin-2 receptor; PBS, phosphate-buffered
saline; PET, positron emission tomography; Pd2(dba)3, tris-
(dibenzylideneacetone)dipalladium(0); P-gp, P-glycoprotein;
ROI, regions of interest; rt, room temperature; SD, standard
deviation; TEA, triethylamine; THA, thalamus; THF, tetrahy-
drofuran; tR, retention time; WSC, 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride; Xant phos,
4,5-bis(diphenylphosphino)-9,9-dimethylxanthene
(13) Cai, J.; Cooke, F. E.; Sherborne, B. S. Antagonists of the orexin
receptors. Curr. Opin. Drug. Discovery Dev. 2006, 16, 631−646.
(14) Roecker, A. J.; Coleman, P. J. Orexin receptor antagonists:
medicinal chemistry and therapeutic potential. Curr. Top. Med. Chem.
2008, 8, 977−987.
(15) Gatfield, J.; Brisbare-Roch, C.; Jenck, F.; Boss, C. Orexin
receptor antagonists: a new concept in CNS disorders? Chem. Med.
Chem. 2010, 5, 1197−1214.
(16) Winrow, C. J.; Gotter, A. L.; Cox, C. D.; Doran, S. M.;
Tannenbaum, P. L.; Breslin, M. J.; Garson, S. L.; Fox, S. V.; Harrell, C.
M.; Stevens, J.; Reiss, D. R.; Cui, D.; Coleman, P. J.; Renger, J. J.
Promotion of sleep by suvorexant - a novel dual orexin receptor
antagonist. J. Neurogenet. 2011, 25, 52−61.
(17) Malherbe, P.; Borroni, E.; Pinard, E.; Wettstein, J. G.; Knoflach,
F. Biochemical and electrophysiological characterization of almorexant,
a dual orexin 1 receptor (OX1)/orexin 2 receptor (OX2) antagonist:
comparison with selective OX1 and OX2 antagonists. Mol. Pharmacol.
2009, 76, 618−31.
(18) Malherbe, P.; Borroni, E.; Gobbi, L.; Knust, H.; Nettekoven, M.;
Pinard, E.; Roche, O.; Rogers-Evans, M.; Wettstein, J. G.; Moreau, J. L.
Biochemical and behavioural characterization of EMPA, a novel high-
affinity, selective antagonist for the OX(2) receptor. Br. J. Pharmacol.
2009, 156, 1326−1341.
(19) Langmead, C. J.; Jerman, J. C.; Brough, S. J.; Scott, C.; Porter, R.
A.; Herdon, H. J. Characterisation of the binding of [3H]-SB-674042, a
novel nonpeptide antagonist, to the human orexin-1 receptor. Br. J.
Pharmacol. 2004, 141, 340−346.
(20) Liu, F.; Majo, V. J.; Prabhakaran, J.; Castrillion, J.; Mann, J. J.;
Martinez, D.; Kumar, J. S. D. Radiosynthesis of [11C]BBAC and
[11C]BBPC as potential PET tracers for orexin2 receptors. Bioorg.
Med. Chem. Lett. 2012, 22, 2172−2174.
(21) Wang, C.; Moseley, C. K.; Carlin, S. M.; Wilson, C. M.;
Neelamegam, R.; Hooker, J. M. Radiosynthesis and evaluation of
[11C]EMPA as a potential PET tracer for orexin 2 receptors. Bioorg.
Med. Chem. 2013, 23, 3389−3392.
(22) Trivedi, P.; Yu, H.; MacNeil, D. J.; Van der Ploeg, L. H. T.;
Guan, X. -M. Distribution of orexin receptor mRNA in the rat brain.
FEBS Lett. 1998, 438, 71−75.
(23) Marcus, J. N.; Aschkenasi, C. J.; Lee, C. E.; Chemelli, R. M.;
Saper, C. B.; Yanagisawa, M.; Elmquist, J. K. Differential expression of
orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 2001, 435,
6−25.
(24) Wright, G. J.; Cherwinski, H.; Foster-Cuevas, M.; Brooke, G.;
Puklavec, M. J.; Bigler, M.; Song, Y.; Jenmalm, M.; Gorman, D.;
McClanahan, T.; Liu, M. R.; Brown, M. H.; Sedgwick, J. D.; Phillips, J.
H.; Barclay, A. N. Characterization of the CD200 receptor family in
mice and humans and their interactions with CD200. J. Immunol.
2003, 171, 3034−3046.
(25) Terauchi, T.; Takemura, A.; Doko, T.; Yoshida, Y.; Tanaka, T.;
Sorimachi, K.; Naoe, Y.; Beuckmann, C.; Kazuta, Y. Cyclopropane
compound. WO 2012/039371 A1, 2010.
(26) Adachi, Y.; Suzuki, H.; Sugiyama, Y. Comparative studies on in
vitro methods for evaluating in vivo function of MDR1 P-glycoprotein.
Pharm. Res. 2001, 18, 1660−1668.
(27) Mintun, M. A.; Raichle, M. E.; Kilbourn, M. R.; Wooten, G. F.;
Welch, M. J. A quantitative model for the in vivo assessment of drug
binding sites with positron emission tomography. Ann. Neurol. 1984,
15, 217−227.
(28) Eckelman, W. C.; Mathis, C. A. Targeting proteins in vivo: in
vitro guidelines. Nucl. Med. Biol. 2006, 33, 161−164.
(29) Eckelman, W. C.; Kilbourn, M. R.; Mathis, C. A. Discussion of
targeting proteins in vivo: In vitro guidelines. Nucl. Med. Biol. 2006, 33,
449−451.
(30) Guo, Q.; Brady, M.; Gunn, R. N. A biomathematical modeling
approach to central nervous system radioligand discovery and
development. J. Nucl. Med. 2009, 50, 1715−1723.
REFERENCES
■
(1) Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.
M.; Tanaka, H.; Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.;
Wilson, S.; Arch, J. R. S.; Buckingham, R. E. C.; Haynes, A. C.; Carr, S.
A.; Annan, R. S.; McNulty, D. E.; Liu, W.-S.; Terrett, J. A.;
Elshourbagy, N. A.; Bergsma, D. J.; Yanagisawa, M. Orexins and
orexin receptors: A family of hypothalamic neuropeptides and G
protein-coupled receptors that regulate feeding behavior. Cell 1998,
92, 573−585.
(2) van den Pol, A. N.; Gao, X.-B.; Obrietan, K.; Kilduff, T. S.;
Belousov, A. B. Presynaptic and postsynaptic actions and modulation
of neuroendocrine neurons by a new hypothalamic peptide,
hypocretin/orexin. J. Neurosci. 1998, 18, 7962−7971.
(3) Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; Hoever, P.;
Aissaoui, H.; Flores, S.; Mueller, C.; Nayler, O.; van Gerven, J.; de
Haas, S. L.; Hess, P.; Qiu, C.; Buchmann, S.; Scherz, M.; Weller, T.;
Fischli, W.; Clozel, M.; Jenck, F. Promotion of sleep by targeting the
orexin system in rats, dogs and humans. Nat. Med. 2007, 13, 150−155.
(4) Thompson, J. L.; Borgland, S. L. A role for hypocretin/orexin in
motivation. Behav. Brain Res. 2011, 217, 446−453.
(5) Nishino, S. Chapter 47 - Hypothalamus, hypocretins/orexin, and
vigilance control. Handb. Clin. Neurol. 2011, 99, 765−782.
(6) Zhang, J.; Li, B.; Yu, L.; He, Y.-C.; Li, H.-Z.; Zhu, J.-N.; Wang, J.-
J. A role for orexin in central vestibular motor control. Neuron 2011,
69, 793−804.
(7) Okumura, T.; Nozu, T. Role of brain orexin in the
pathophysiology of functional gastrointestinal disorders. J. Gastro-
enterol. Hepatol. 2011, 26, 61−66.
(8) Sakurai, T. Orexins and orexin receptors: implication in feeding
behavior. Regul. Pept. 1999, 85, 25−30.
(9) Sharf, R.; Sarhan, M.; Dileone, R. J. Role of orexin/hypocretin in
dependence and addiction. Brain Res. 2010, 1314, 130−138.
(10) Coleman, P. J.; Renger, J. J. Orexin receptor antagonists: a
review of promising compounds patented since 2006. Expert. Opin.
Ther. Pat. 2010, 20, 307−324.
(11) Bingham, M. J.; Cai, J.; Deehan, M. R. Eating, sleeping and
rewarding: orexin receptors and their antagonists. Curr. Opin. Drug.
Discovery Dev. 2006, 9, 551−559.
N
dx.doi.org/10.1021/jm400772t | J. Med. Chem. XXXX, XXX, XXX−XXX