Mendeleev Commun., 2013, 23, 224–225
0.8
0.7
0.6
0.5
0.4
0.3
0.2
product of this step was reacted with 2 equiv. of dimedone and
4-methylaniline, 4-chloroaniline or ammonium acetate to access
6a–c. The desired metallophthalocyanines 7–10 were obtained by
cyclotetramerization of dinitrile compounds 6a–c (3 mmol) in
the presence of anhydrous metal salts [CoCl2 and Zn(OAc)2]
(1 mmol) using DBU as a base in 2-(dimethylamino)ethanol
(DMAE) under reflux.‡ These complexes showed good thermal
stability (Table S1, Online Supplementary Materials). The primary
weight loss is related to the residual solvent and water which is a
typical of a TGA heating run. The initial decomposition tempe-
ratures of the compounds are in the order: 9 > 7 > 10 > 8.
Phthalocyanine 7 is soluble in THF, chloroform and DMF,
phthalocyanine 8 is soluble in chloroform and DMF, whereas
phthalocyanines 9, 10 show good solubility in DMSO and DMF.
The UV-VIS spectra of compounds 7–10 in DMF are shown in
Figure 1.
3
2
1
0.1
0.0
190
290
390
490
l/nm
590
690
790
890
Figure 2 Absorption spectra of complex 7 in DMF at concentrations of
(1) 10, (2) 20 and (3) 30 mmol dm–3
.
0.8
The aggregation behaviour of phthalocyanines 7–10 at five
concentrations (50, 40, 30, 20 and 10 mmol dm–3) in DMSO,
DMF, chloroform and THF was studied. The intensity of the
absorption bands was increased with growing concentration
and there were no new bands due to the aggregated species. So,
phthalocyanines 7–10 did not form aggregates in these solvents
at different concentrations. Phthalocyanine 7 did not show aggre-
gation in THF, DMF and CHCl3 (Figure 2). The aggregation
behaviours of synthesized compounds were initiated at concetra-
tion of 500 mmol dm–3.
0.7
7
0.6
0.5
0.4
0.3
8
0.2
9
0.1
10
In conclusion, we have synthesized and characterized four
new metallophthalocyanines 7–10 which possess good solubility
and do not undergo aggregation in DMF, DMSO, THF and
CHCl3.
0.0
190
290
390
490
l/nm
590
690
790
890
Figure 1 Absorption spectra of complexes 7–10 in DMF (C = 30 mmol dm–3).
We gratefully acknowledge the financial support from the
Research Council of Arak University.
4-{4-[10-(4-Chlorophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,
6,7,8,9,10-decahydro-9-acridinyl]phenoxy}phthalonitrile 6b: yield 78%.
IR (KBr, nmax/cm–1): 3086, 3047, 2962, 2935, 2879, 2231, 1641, 1593, 1487,
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2013.07.016.
1361, 1284, 850, 524. 1H NMR (300 MHz, DMSO-d6) d: 7.66 (d, 2H, Harom
,
J 7.5 Hz), 7.48 (m, 2H, Harom), 7.19 (m, 4H, Harom), 6.91 (m, 3H, Harom),
5.48 (s, 1H, CH), 1.99 (m, 8H, CH2), 0.95 (s, 6H, Me), 0.78 (s, 6H, Me).
4-[4-(3,3,6,6-Tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-decahydro-
9-acridinyl)phenoxy]phthalonitrile 6c: yield 68%. IR (KBr, nmax/cm–1):
3313, 3205, 3061, 3040, 2985, 2931, 2872, 2231, 1628, 1593, 1485, 1423,
References
1 E. Hamuryudan, S. Merey and Z. A. Bayır, Dyes Pigm., 2003, 59, 263.
2 A. R. Karimi and F. Bayat, Tetrahedron Lett., 2012, 53, 123.
3 H. Karaca, S. Sezer and C. Tanyeli, Dyes Pigm., 2011, 90, 100.
4 A. R. Karimi and F. Bayat, Tetrahedron Lett., 2013, 54, 45.
5 A. R. Karimi and A. Khodadadi, Tetrahedron Lett., 2012, 53, 5223.
6 D. M. Knwby and T. M. Swager, Chem. Mater., 1997, 9, 535.
7 I. Booysen, F. Matemadombo, M. Durmus and T. Nyokong, Dyes Pigm.,
2011, 89, 111.
8 O. Bekircan, Z. Bıyıklıog˘lu, I. Acar, H. Bektas and H. Kantekin, J.
Organomet. Chem., 2008, 693, 3425.
9 M. Özer, A. Altındal , A. R. Özkaya, M. Bulut and Ö. Bekarog˘lu, Synth.
Met., 2005, 155, 222.
1
1392, 572, 524. H NMR (300 MHz, DMSO-d6) d: 11.94 (s, 1H, NH),
7.70 (d, 1H, Harom, J 8.4 Hz), 7.30 (d, 2H, Harom, J 2.1 Hz), 7.18 (m, 2H,
Harom), 6.67 (d, 2H, Harom, J 8.4 Hz), 5.53 (s, 1H, CH), 2.45 (m, 8H, CH2),
1.23 (s, 6H, Me), 0.89 (s, 6H, Me).
‡
General procedure for preparation of metallophthalocyanines 7–10.
A mixture of compound 6 (3 mmol), metal salt [anhydrous Zn(OAc)2 or
CoCl2] (1 mmol), DBU (3 drops) and DMAE (10 ml) was refluxed under
nitrogen for 12 h. The reaction mixture was then cooled to room tem-
perature. Ethanol was then added and the product was filtered under
suction. The green solid was washed several times with hot ethanol.
Zinc(ii) phthalocyanine 7: yield 42%. IR (KBr, nmax/cm–1): 3055, 2957,
2872, 1716, 1639, 1601, 1502, 1473, 1363, 1300, 1261, 1224, 1165, 1122,
954, 846. 1H NMR (300 MHz, DMSO-d6) d: 7.56–6.95 (m, 44H, Harom),
5.29 (4H, CH), 2.45 (12H, Me), 2.25–1.90 (m, 32H, CH2), 0.99–0.84
(48H, Me). MS (MALDI-TOF), m/z: 2392 (M+).
Cobalt(ii) phthalocyanine 8: yield 39%. IR (KBr, nmax/cm–1): 2957,
2918, 2850, 1641, 1500, 1471, 1363, 1222, 1097, 1016, 956, 848, 729.
MS (MALDI-TOF), m/z: 2385 (M+).
Zinc(ii) phthalocyanine 9: yield 41%. IR (KBr, nmax/cm–1): 3041, 2943,
2874, 1714, 1635, 1599, 1491, 1473, 1394, 1365, 1228, 1163, 1091, 1014,
943, 746. MS (MALDI-TOF), m/z: 2474 (M+).
10 E. Antman, J. Muller, S. Goldberg, R. Macalpin, M. Rubenfire, B. Tabatznik
,
C. Liang, F. Heupler, S. Achuff, N. Reichek, E. Geltman, N. Z. Kerin,
R. K. Neff and E. N. Raunwald, Engl. J. Med., 1980, 302, 1269.
11 R. S. Hornung, B. A. Gould, R. I. Jones, T. N. Sonecha and E. B. Raferty,
Am. J. Cardiol., 1983, 51, 1323.
12 A. Lewanowicz, J. Lipin´ski, S. Nešpu˚rek, A. Olszowski, E. Sliwin´ska
and J. Sworakowski, J. Photochem. Photobiol. A, 1999, 121, 125.
ˇ
13 V. Kirveliene,A. Maroziene, N.Cenas, D. Tirzite, G. Tirzitis and B. Juodka,
Biologija, 2003, 53.
14 J. Azizian, F. Hatamjafari and A. R. Karimi, J. Heterocycl. Chem., 2006,
43, 1349.
Zinc(ii) phthalocyanine 10: yield 45%. IR (KBr, nmax/cm–1): 3383, 3261,
3043, 2951, 1714, 1602, 1504, 1473, 1394, 1369, 1232, 1176, 1085, 945,
837. 1H NMR, d: 7.70–7.19 (m, 4H + 28H, NH + Harom), 5.40 (4H, CH),
2.50–2.09 (32H, CH2), 1.04–0.98 (48H, Me). MS (MALDI-TOF), m/z:
2030 (M+).
For more details, see Online Supplementary Materials.
Received: 24th December 2012; Com. 12/4039
– 225 –