Inorganic Chemistry
Article
ligands L3 (acid) and L4 (no substituent R) were also found to
form clusters with similar geometries, it was concluded that, as
a main rule, the NTA-based chelator L tends to form
(Cu2L1)z−(Cu2L4)z clusters as found in copper(I) pro-
teins,26−32 in particular MTs,33−35 and some inorganic model
clusters.36 This result provides insight into an efficient design of
copper(I) chelators that mimic the coordination sphere found
in proteins in either Cu4S6 or Cu6S9 clusters.26−36
FAME CRG beamline for provision of the synchrotron
radiation beamline and facilities.
REFERENCES
■
(1) Scott, L. E.; Orvig, C. Chem. Rev. 2009, 109, 4885.
(2) Kim, B. E.; Nevitt, T.; Thiele, D. J. Nat. Chem. Biol. 2008, 4, 176.
(3) Lutsenko, S. Curr. Opin. Chem. Biol. 2010, 14, 211.
(4) Huster, D. Best Pract. Res., Clin. Gastroenterol. 2010, 24, 531.
(5) Delangle, P.; Mintz, E. Dalton Trans. 2012, 41, 6359.
(6) Andersen, O. Chem. Rev. 1999, 99, 2683.
In addition to these structural results, the percentage of each
species at each step of the titration could be determined by the
quantitative linear combination fitting of the XANES spectra.
These analyses return the equilibrium constants between the
two complexes log K63 = 20.8(1) and 21.5(4) for L1 and L2,
respectively. These values are in total agreement with an
independent determination described elsewhere using BCS as a
copper(I) competitor.18,19 Therefore, XANES provides reliable
equilibrium constants even at very low copper concentrations
(down to 0.5 mM for samples 1A and 2A; Table 1). Moreover,
they confirm that the domain of predominance of the
mononuclear CuS3 species is significantly larger for the ester
ligand L1 and that the amide ligand L2 has a greater tendency to
form the cluster from the mononuclear complex, as shown in
the speciation diagrams of parts a (L1) and b (L2) in Figure 6.
In conclusion, the tripodal ligands L derived from NTA and
extended by three converging metal-binding cysteine chains are
promising copper(I) chelating agents for in vivo applications
such as the treatment of Wilson’s disease. Here, Cu K-edge
XAS gives very important structural information for the two
types of copper(I) complexes formed with these ligands.
Copper(I) is coordinated by three sulfur atoms in a trigonal-
planar environment whatever the nuclearity of the complex is.
The C3-symmetric structure found for the mononuclear
complexes suggests that the cavity of the NTA-based tripodes
is perfectly adapted to the coordination of copper(I), which is
not the case for larger cations such as mercury(II). Thus, the
large affinity of these chemical architectures for copper(I) may
be attributed to their ability to induce the very stable sulfur-
only trigonal-planar copper(I) coordination. Moreover, the
copper environment in the cluster (Cu2L1,2)3 is reminiscent of
the geometry found in copper(I) proteins or MTs with Cu---
Cu interactions at an average distance of 2.7 Å. These structural
data are essential for the design of copper(I) chelators as
potential intracellular drugs used to treat copper overloads.
(7) Sarkar, B. Chem. Rev. 1999, 99, 2535.
(8) Tao, T. Y.; Gitlin, J. A. Hepatology 2003, 37, 1241.
(9) Rosenzweig, A. C.; O’Halloran, T. V. Curr. Opin. Chem. Biol.
2000, 4, 140.
(10) Koch, K. A.; Pena, M. M. O.; Thiele, D. J. Chem. Biol. 1997, 4,
549.
(11) Stillman, M. J. Coord. Chem. Rev. 1995, 144, 461.
(12) Nielson, K. B.; Atkin, C. L.; Winge, D. R. J. Biol. Chem. 1985,
260, 5342.
(13) Calderone, V.; Dolderer, B.; Hartmann, H. J.; Echner, H.;
Luchinat, C.; Del Bianco, C.; Mangani, S.; Weser, U. Proc. Natl. Acad.
Sci. U.S.A. 2005, 102, 51.
(14) Rousselot-Pailley, P.; Seneque, O.; Lebrun, C.; Crouzy, S.;
Boturyn, D.; Dumy, P.; Ferrand, M.; Delangle, P. Inorg. Chem. 2006,
45, 5510.
(15) Seneque, O.; Crouzy, S.; Boturyn, D.; Dumy, P.; Ferrand, M.;
Delangle, P. Chem. Commun. 2004, 770.
(16) Pujol, A. M.; Cuillel, M.; Jullien, A.-S.; Lebrun, C.; Cassio, D.;
Mintz, E.; Gateau, C.; Delangle, P. Angew. Chem., Int. Ed. 2012, 51,
7445.
(17) Pujol, A. M.; Cuillel, M.; Renaudet, O.; Lebrun, C.;
Charbonnier, P.; Cassio, D.; Gateau, C.; Dumy, P.; Mintz, E.;
Delangle, P. J. Am. Chem. Soc. 2011, 133, 286.
(18) Pujol, A. M.; Gateau, C.; Lebrun, C.; Delangle, P. Chem.Eur. J.
2011, 17, 4418.
(19) Pujol, A. M.; Gateau, C.; Lebrun, C.; Delangle, P. J. Am. Chem.
Soc. 2009, 131, 6928.
(20) Presta, A.; Green, A. R.; Zelazowski, A.; Stillman, M. J. Eur. J.
Biochem. 1995, 227, 226.
(21) Faller, P. FEBS J. 2010, 277, 2921.
(22) Hamer, D. H. Annu. Rev. Biochem. 1986, 55, 913.
(23) Pujol, A. M.; Lebrun, C.; Gateau, C.; Manceau, A.; Delangle, P.
Eur. J. Inorg. Chem. 2012, 3835.
(24) Garner, C. D.; Nicholson, J. R.; Clegg, W. Inorg. Chem. 1984, 23,
2148.
(25) Fujisawa, K.; Imai, S.; Suzuki, S.; Moro-oka, Y.; Miyashita, Y.;
Yamada, Y.; Okamoto, K. J. Inorg. Biochem. 2000, 82, 229.
(26) Poger, D.; Fillaux, C.; Miras, R.; Crouzy, S.; Delangle, P.; Mintz,
E.; Den Auwer, C.; Ferrand, M. J. Biol. Inorg. Chem. 2008, 13, 1239.
(27) Ralle, M.; Lutsenko, S.; Blackburn, N. J. J. Biol. Chem. 2003, 278,
23163.
(28) Voronova, A.; Meyer-Klaucke, W.; Meyer, T.; Rompel, A.;
Krebs, B.; Kazantseva, J.; Sillard, R.; Palumaa, P. Biochem. J. 2007, 408,
139.
ASSOCIATED CONTENT
■
S
* Supporting Information
Syntheses of ligand L4 and supplementary figures and tables for
the XAS analyses. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
Notes
(29) Pushie, M. J.; Zhang, L. M.; Pickering, I. J.; George, G. N.
Biochim. Biophys. Acta, Bioenerg. 2012, 1817, 938.
(30) Brown, K. R.; Keller, G. L.; Pickering, I. J.; Harris, H. H.;
George, G. N.; Winge, D. R. Biochemistry 2002, 41, 6469.
(31) Graden, J. A.; Posewitz, M. C.; Simon, J. R.; George, G. N.;
Pickering, I. J.; Winge, D. R. Biochemistry 1996, 35, 14583.
(32) Xiao, Z.; Loughlin, F.; George, G. N.; Howlett, G. J.; Wedd, A.
G. J. Am. Chem. Soc. 2004, 126, 3081.
(33) George, G. N.; Winge, D.; Stout, C. D.; Cramer, S. P. J. Inorg.
Biochem. 1986, 27, 213.
(34) George, G. N.; Byrd, J.; Winge, D. R. J. Biol. Chem. 1988, 263,
8199.
(35) Smith, T. A.; Lerch, K.; Hodgson, K. O. Inorg. Chem. 1986, 25,
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the “Agence Nationale pour la
Recherche” (COPDETOX; Grant ANR-11-EMMA-025), the
“Fondation pour la Recherche Medicale” (Grant
́
DCM20111223043), and the Labex ARCANE (Grant ANR-
11-LABX-0003-01). The authors acknowledge the ESRF and
4677.
9960
dx.doi.org/10.1021/ic401206u | Inorg. Chem. 2013, 52, 9954−9961