370 Kuttler et al.
resultant mixture was stirred at 125◦C for 19 h. The
solvent was removed under reduced pressure and the
resultant solid was dissolved in benzene (40 mL).
The organic layer was washed with water (2 × 50
mL), dried (MgSO4), and the solvent evaporated un-
der reduced pressure. The solid material was washed
with a small quantity of cold pentane to yield the
product as a white solid (0.10 g, 17% yield). Further
purification via recrystallization from methanol. Mp
[9] Bourbigot, S.; Duquesne, S. J Mater Chem 2007, 17,
2283–2300.
[10] Morgan, A. B.; Tour, J. M. J Appl Polym Sci 2000, 76,
1257–1268.
[11] Sacristan, M.; Hull, T. R.; Stec, A. A.; Ronda, J. C.;
Galia, M.; Cadiz, V. Polym Degrad Stab 2010, 95,
1269–1274.
[12] Benin, V.; Durganala, S.; Morgan, A. B. J Mater Chem
2012, 22, 1180–1190.
[13] Benin, V.; Morgan, A. B. Heat Release of Flame Retar-
dant Polyurethanes Containing Commercial and Po-
tential Flame Retardant Chemistries 2013, in prepa-
ration.
[14] Allard, N.; Aich, R. B.; Gendron, D.; Boudreault,
P.-L.; Tessier, C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc,
M. Macromolecules 2010, 43, 2328–2333.
[15] Decken, A.; Singh, A.; Vogels, C. M.; Westcott, S. A.
Acta Crystallogr 2002, E58, o1213–o1214.
[16] He, X.-F.; Zhang, H.; Vogels, C. M.; Decken, A.; West-
cott, S. A. Heteroat Chem 2004, 15, 369–372.
[17] Kiehne, U.; Bruhn, T.; Schnakenburg, G.; Frohlich,
R.; Bringmann, G.; Lutzen, A. Chem–Eur J 2008, 14,
4246–4255.
1
183–185◦C. H NMR (CDCl3) δ 1.28 (s, 12H), 2.79
(bs, 3H), 2.93 (s, 3H), 3.06 (bs, 3H), 3.08 (s, 3H),
7.29 (d, J = 7.8 Hz, 1H), 7.47 (dd, J1 = 7.8 Hz,
J2 = 1.8 Hz, 1H), 7.83 (d, J = 1.4 Hz, 1H). 13C NMR
(DMSO-d6) δ 24.9,35.0, 35.3, 39.0, 39.5, 83.9, 125.6,
129.5, 133.7, 136.1, 144.0, 171.1, 171.8; Anal. Calcd.
for C18H27BN2O4: C, 62.44; H, 7.86; N, 8.09. Found:
C, 62.31; H, 7.89; N, 7.98.
SUPPORTING INFORMATION
[18] Yoshino, J.; Kano, N.; Kawashima, T. Tetrahedron
2008, 64, 7774–7781.
Supporting Information Available. Crystallogra-
phic data (excluding structure factors) for the struc-
tures in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supple-
mentary publication numbers CCDC 795279, CCDC
916569, and CCDC 916570. Copy of the data can be
obtained, free of charge, on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-
1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).
Calculated energies and thermodynamic param-
eters for all target boronic esters (3, 7, and 10) can
be found in Table S1. Calculated energies and ther-
modynamic parameters for model structures 17–20
are listed in Table S2.
[19] Bhat, K. L.; Howard, N. J.; Rostami, H.; Lai, J. H.;
Bock, C. W. J Mol Struct Theochem 2005, 723, 147–
157.
[20] Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Mur-
phy, J. M.; Hartwig, J. F. Chem Rev 2010, 110, 890–
931.
[21] Iovine, P. M.; Kellett, M. A.; Redmore, N. P.; Therien,
M. J. J Am Chem Soc 2000, 122, 8717–8727.
[22] Khurana, J. M.; Chauhan, S.; Bansal, G. Monatshefte
Chem 2004, 135, 83–87.
[23] Kumagai, T.; Anki, T.; Ebi, T.; Konishi, A.;
Matsumoto, K.; Kurata, H.; Kubo, T.; Katsumoto,
K.; Kitamura, C.; Kawase, T. Tetrahedron 2010, 66,
8968–8973.
[24] Perry, R. J.; Wilson, B. D.; Turner, S. R.; Blevins, R.
W. Macromolecules 1995, 28, 3509–3515.
[25] He, X. F.; Zhang, H.; Vogels, C. M.; Decken,
A.; Westcott, S. A. Heteroat Chem 2004, 15,
369–372.
[26] Allard, N.; Aich, R. B.; Gendron, D.; Boudreault, P. L.;
Tessier, C.; Alem, S.; Tse, S. C.; Tao, Y.; Leclerc, M.
Macromolecules 2010, 43, 2328–2333.
REFERENCES
[1] Fire Retardancy of Polymeric Materials. Wilkie, C. A.,
Morgan, A. B. (Eds.); Taylor and Francis: Boca Raton,
FL, 2010; ISBN 978-1-4200-8399-6.
[2] Weil, E. D.; Levchik, S. V. Flame Retardants for Plas-
tics and Textiles; Hanser: Cincinnati, OH, 2009; ISBN
978-3-446-41652-9.
[3] Simonson, M.; Blomqvist, P.; Boldizar, A.; Mo¨ller,
K.; Rosell, L.; Tullin, C.; Stripple, H.; Sundqvist, J. O.
In SP Report 2000:13; Interscience Communications
Ltd.: Greenwich, London, UK, 2000, ISBN 91-7848-
811-7.
[4] Blomqvist, P.; Rosell, L.; Simonson, M. Fire Technol
2004, 40, 39–58.
[5] Blomqvist, P.; Rosell, L.; Simonson, M. Fire Technol
2004, 40, 59–73.
[6] Stapleton, H. M.; Dodder, N. G.; Offenberg, J. H.;
Schantz, M. M.; Wise, S. A. Environ Sci Technol 2005,
39, 925–931.
[7] Tange, L.; Drohmann, D. Polym. Degrad. Stab. 2005,
88, 35–40.
[8] Wadehra, I. Fire Mater 2005, 29, 121–126.
[27] Liu, X.-C.; Hubbard, J. L.; Scouten, W. H.
Organomet Chem 1995, 493, 91–94.
J
[28] Matteson, D. S.; Michnick, T. J.; Willett, R. D.;
Patterson, C. D. Organometallics 1989, 8, 726–729.
[29] Gaussian 03, R. C.; Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-
man, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji,
H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,
J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Sal-
vador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dap-
prich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.;
Heteroatom Chemistry DOI 10.1002/hc