groups, expanding the scope to include simple and commonly
encountered DGs is highly desirable. The amine group is one
of the most prevalent nitrogen-containing groups, which has
a long history of acting as a chelation group in cyclometala-
tion reactions.7 However, there are few reports of transition-
metal-catalyzed CꢀH bond functionalization reactions by
the use of amines as DGs,8 especially in the case of using free
amines in the direct CꢀH bond functionalization.9 In 2006,
Daugulis and co-workers disclosed that unsubstituted ben-
zylamines and N-methylbenzylamine can be ortho-arylated
under palladium catalysis at 130 °C.10 In 2011, Gaunt and
co-workers developed a Pd(II)-catalyzed C(sp2)ꢀH aryla-
tion of β-arylethylamines directed by N-aryl substituted
amine.11 Very recently, You and our group reported that
N,N-dimethylaminomethyl could be used successfully as
the directing group for Pd-catalyzed C(sp2)ꢀH arylation.12
Our ongoing research program on free-amine directed CꢀH
activation prompted us to explore the arylation of biaryl-2-
amines.13 Herein, we report a Pd(OAc)2-catalyzed C(sp2)ꢀH
arylation of arenes with aryl iodides directed by a free-amine
group in the presence of trifluoroacetic acid.
We chose 30-methylbiphenyl-2-amine 1a and iodoben-
zene 2a as the model substrates at 100 °C for 12 h to study
the arylation reaction. Initially, we used the same reaction
conditions that we have reported for the alkenylation
of biaryl-2-amine: 2.5 mol % Pd(OAc)2 and 1.5 equiv of
AgOAc in the presence of acetic acid (HOAc) (Table 1,
entry 1). However, the desired CꢀC cross-coupling pro-
duct was not detected. To our delight, such a transforma-
tion was highly promoted when trifluoroacetic acid (TFA)
was utilized in place of HOAc to give the C(sp2)ꢀH
arylation product in 86% yield (Table 1, entry 2). It should
be noted that neither the BuchwaldꢀHartwig N-arylation
product nor amide from TFA and amine 1a were detected
by GC-MS analysis, showing the excellent chemoselectiv-
ity for C(sp2)ꢀH arylation.14 Palladium catalysts such
as PdCl2, Pd(CH3CN)2Cl2, Pd(PPh3)2Cl2, Pd(OTFA)2,
Pd(PPh3)4, and Pd(dba)2 were also screened, and the
(5) For oxime group directed CꢀH bond arylation, see: (a)
Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew.
Chem., Int. Ed. 2008, 47, 9462. (b) Sun, C.-L.; Liu, N.; Li, B.-J.; Yu,
D.-G.; Wang, Y.; Shi, Z.-J. Org. Lett. 2010, 12, 184.
(6) For N-heterocycle directed CꢀH bond arylation, see: (a) Oi, S.;
Fukita, S.; Inoue, Y. Chem. Commun. 1998, 2439. (b) Shabashov, D.;
Daugulis, O. Org. Lett. 2005, 7, 3657. (c) Ackermann, L.; Althammer,
A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. (d) Hull, K. L.;
Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904. (e) Ozdemir, I.;
Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.;
Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156. (f) Lakshman, M. K.;
Deb, A. C.; Ram Chamala, R.; Pradhan, P.; Pratap, R. Angew. Chem.,
Int. Ed. 2011, 50, 11400. (g) Guo, H.-M.; Jiang, L.-L.; Niu, H.-Y.; Rao,
W.-H.; Liang, L.; Mao, R.-Z.; Li, D.-Y.; Qu, G.-R. Org. Lett. 2011, 13,
2008. (h) Yu, M.; Liang, Z.; Wang, Y.; Zhang, Y. J. Org. Chem. 2011, 76,
4987. (i) Kwak, J.; Kim, M.; Chang, S. J. Am. Chem. Soc. 2011, 133,
3780.
Table 1. Screening of the Reaction Conditionsa
(7) For amine group directed cyclometalation reactions, see: (a)
Cope, A. C.; Friedrich, E. C. J. Am. Chem. Soc. 1968, 90, 909. (b)
Ryabov, A. D. Chem. Rev. 1990, 90, 403. (c) Vicente, J.; Saura-Llamas,
I.; Palin, M. J.; Jones, P. G.; Ramırez de Arellano, M. C. Organome-
´
yield
tallics 1997, 16, 826. (d) Vicente, J.; Saura-Llamas, I.; Cuadrado, J.
Organometallics 2003, 22, 5513. (e) Dupont, J.; Consorti, C. S.; Spencer,
J. Chem. Rev. 2005, 105, 2527. (f) Albert, J.; Granell, J.; Zafrilla, J.; Font-
entry
catalyst
Pd(OAc)2
additive
acid
(%)b
1
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOTFA
Ag2O
HOAc
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
TFA
0
Bardia, M.; Solans, X. J. Organomet. Chem. 2005, 690, 422. (g) Vicente,
2
Pd(OAc)2
PdCl2
86
75
72
76
78
82
77
80c
82
51
40
0
ꢀ
J.; Saura-Llamas, I.; Garcı
´
a-Lοpez, J.-A.; Calmuschi-Cula, B. Organo-
3
metallics 2007, 26, 2768. (h) Albert, J.; D’Andrea, L.; Granell, J.;
Zafrilla, J.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 2007,
4
Pd(CH3CN)2Cl2
Pd(PPh3)2Cl2
Pd(OTFA)2
Pd(PPh3)4
Pd(dba)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
ꢀ
ꢀ
692, 4895. (i) Vicente, J.; Saura-Llamas, I.; Garcı
´
a-Lοpez, J.-A. Orga-
5
ꢀ
nometallics 2009, 28, 448. (j) Oliva-Madrid, M.-J.; Garcıa-Lοpez, J.-A.;
´
6
Saura-Llamas, I.; Bautista, D.; Vicente, J. Organometallics 2012, 31,
3647.
7
8
(8) For amine group directed CꢀH activation reactions, see: (a)
Kakiuchi, F.; Igi, K.; Matsumoto, M.; Hayamizu, T.; Chatani, N.;
Murai, S. Chem. Lett. 2002, 396. (b) Orito, K.; Horibata, A.; Nakamura,
T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Tokuda, M.
J. Am. Chem. Soc. 2004, 126, 14342. (c) Cai, G.; Fu, Y.; Li, Y.; Wan, X.;
Shi, Z.-J. J. Am. Chem. Soc. 2007, 129, 7666. (d) Li, H.; Cai, G.-X.; Shi,
Z.-J. Dalton Trans. 2010, 39, 10442. (e) Zhang, H.; Cui, X.; Yao, X.;
Wang, H.; Zhang, J.; Wu, Y. Org. Lett. 2012, 14, 3012. (f) Roering, A. J.;
Hale, L. V. A.; Squier, P. A.; Ringgold, M. A.; Wiederspan, E. R.; Clark,
T. B. Org. Lett. 2012, 14, 3558.
(9) For free-amine group directed CꢀH activation reactions, see: (a)
Yi, C. S.; Yun, S. Y. J. Am. Chem. Soc. 2005, 127, 17000. (b) He, H.; Liu,
W.-B.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2009, 131, 8346. (c) Ye,
K.-Y.; He, H.; Liu, W.-B.; Dai, L.-X.; Helmchen, G.; You, S.-L. J. Am.
Chem. Soc. 2011, 133, 19006. (d) Wang, Y.; Zhu, Q. Adv. Synth. Catal.
2012, 354, 1902. (e) Morimoto, K.; Itoh, M.; Hirano, K.; Satoh, T.;
Shibata, Y.; Tanaka, K.; Miura, M. Angew. Chem., Int. Ed. 2012, 51,
5359. (f) Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924. (g)
Liang, D.; Hu, Z.; Peng, J.; Huang, J.; Zhu, Q. Chem. Commun. 2013, 49,
173.
9
10
11
12
13
14
15
16
Ag2CO3
Cu(OAc)2
AgOAc
ꢀ
0
Pd(OAc)2
Pd(OAc)2
trd
tre
ꢀ
a Reaction conditions: 1a (0.5 mmol), 2a (3.0 mmol), Pd catalyst
(0.0125 mmol, 2.5 mol %), additives (0.75 mmol, 1.5 equiv), acid (1 mL),
TFEtOH (1 mL), 10 min at room temperature (rt), then heated at 100 °C
with stirring for 12 h. b Isolated yields based on biphenylamine 1a.
c Pd(OAc)2 (1 mol %). d Under a O2 atmosphere. e Under a N2 atmosphere.
(10) Lazareva, A.; Daugulis, O. Org. Lett. 2006, 8, 5211.
(11) Haffemayer, B.; Gulias, M.; Gaunt, M. J. Chem. Sci. 2011, 2,
312.
(13) (a) Liang, Z.; Ju, L.; Xie, Y.; Huang, L.; Zhang, Y. Chem.;Eur.
J. 2012, 18, 15816. (b) Liang, Z.; Zhang, J.; Liu, Z.; Wang, K.; Zhang, Y.
Tetrahedron 2013, 69, 6519.
(12) (a) Gao, D.-W.; Shi, Y.-C.; Gu, Q.; Zhao, Z.-L.; You, S.-L.
J. Am. Chem. Soc. 2013, 135, 86. (b) Feng, R.; Yao, J.; Liang, Z.; Liu, Z.;
Zhang, Y. J. Org. Chem. 2013, 78, 3688.
(14) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc.
Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Acc. Chem. Res. 1998, 31,
852.
B
Org. Lett., Vol. XX, No. XX, XXXX