Scheme 1. Synthesis Strategy for Auxofuran (1)
Scheme 2. Synthesis of Chiral Dienophiles 9À10
a “clickÀunclick” cycloaddition/cycloreversion reac-
tion of oxazole 4 with chiral dienophile 5. Although
variants of this chemistry have found several applications
in natural product synthesis,8À10 the use of unactivated
alkynes as external dienophiles is rare.11 Moreover, the
few known examples pertain to the preparation of fairly
simple, achiral furan reagents.11 Hence, the serviceability
of this process in the context of total synthesis had yet to be
investigated.
Scheme 3. Conversion of Alcohol 9 to (R)-Nonalactone (12)
Toward this end, chiral dienophiles 9À11 were prepared
from commercially available ethyl malonyl chloride 6 as
outlined in Schemes 2À3. Alkynylation12 of 6 with 1-pen-
tynylzinc chloride afforded ynone 7 (92%), which cleanly
underwent Noyori asymmetric transfer hydrogenation13
to deliver propargyl alcohol 9 (99%) with high enantio-
meric purity (>94% ee). Subsequent TBDPS protection
provided silyl ether 10 with an overall efficiency of 87%
(3 steps, Scheme 2). To ensure that the absolute stereo-
chemistry of 9À10 was indeed as we had expected from the
Noyori reduction, 9 was subjected to careful lactonization to
(S)-alkynyllactone 11 (ee 94%) followed by hydrogenation
of the alkyne linkage to provide the known (R)-nonalactone
12 (Scheme 3). Interestingly, the latter is an aroma compo-
nent of Australian wines14 and a worthy target in its own
right, recently synthesized in five steps from L-glutamic
acid14 and by optical resolution of (()-12.15
At this point, the cycloaddition/cycloreversion reaction
of commercially available 4-phenyloxazole 4 with ynone 7
and unactivated alkynes 9À11 was explored (Table 1).
Counterintuitively, the unactivated alkyne 11 turned out
to be more effective than its ynone counterpart 7, affording
furan 14 in essentially quantitative yield (entry 2 vs 1,
Table 1).16 Furthermore, enantiopure14could be obtained
in excellent yield directly from hydroxy ester 9 via in situ
lactonization (95%, entry 3). Even though the bulkier alkyne
10 was less reactive under the same conditions (ca. 40À45%
conversion), a slight modification of the procedure enabled
access to 15 with high efficiency (260À270 °C, 20 h, 84%,
entry 4). It is worthy of note that none of the DielsÀAlder
adducts could be observed in these experiments, presumably
(8) Levin, J. I.; Laakso, L. M. Chapter 3: Oxazole Diels-Alder
Reactions. In Oxazoles: Synthesis, Reactions, and Spectroscopy, Part
A, Vol. 60; Palmer, D. C., Ed.; Wiley-VCH: Weinheim, 2003; pp
417À472.
(9) For intramolecular versions, see: (a) Jacobi, P. A.; Craig, T. A.;
Walker, D. G.; Arrick, D. A.; Frechette, R. F. J. Am. Chem. Soc. 1984,
106, 5585–5594. (b) Liu, B.; Padwa, A. Tetrahedron Lett. 1999, 40, 1645–
1648. (c) Sessions, E. H.; Jacobi, P. A. Org. Lett. 2006, 8, 4125–4128.
(d) Sessions, E. H.; O’Connor, R. T., Jr.; Jacobi, P. A. Org. Lett. 2007, 9,
3221–3224. (e) Onyango, E. O.; Jacobi, P. A. J. Org. Chem. 2012,
77, 7411–7427.
(10) For the use of ynones as external dienophiles, see: (a) Paquette,
L. A.; Efremov, I. J. Am. Chem. Soc. 2001, 123, 4492–4501. (b) Clark,
J. S.; Marlin, F.; Nay, B.; Wilson, C. Org. Lett. 2003, 5, 89–92.
(c) Piggott, M. J.; Wege, D. Tetrahedron 2006, 62, 3550–3556.
(11) (a) Yu, P.; Yang, Y.; Zhang, Z. Y.; Mak, T. C. W.; Wong,
H. N. C. J. Org. Chem. 1997, 62, 6359–6366. (b) Wong, M. K.; Leung,
C. Y.; Wong, H. N. C. Tetrahedron 1997, 53, 3497–3512. See also:
(c) Lopez, F. J.; Jett, M.-F.; Muchowski, J. M.; Dov Nitzan, D.; O’Yang,
C. Heterocycles 2002, 56, 91–95. (d) Dolbier, W. R., Jr.; Mitani, A.; Xu,
W.; Ghiviriga, I. Org. Lett. 2006, 8, 5573–5575.
(14) Cooke, R. C.; van Leeuwen, K. A.; Capone, D. L.; Gawel, R.;
Elsey, G. M.; Sefton, M. A. J. Agric. Food Chem. 2009, 57, 2462–2467.
(15) Yumoto, K.; Hasegawa, M.; Toshima, H. Heterocycles 2010, 81,
421–431.
(16) Conceivably, the cycloaddition of unactivated alkynes to 4 may
proceed through inverse-electron demand; for relevant DFT studies, see:
(a) Jursic, B. S. J. Chem. Soc., Perkin Trans. 2 1996, 1021–1026.
ꢀ
ꢀ
ꢀ
(12) (a) Carbery, D. R.; Reignier, S.; Myatt, J. W.; Miller, N. D.;
Harrity, J. P. A. Angew. Chem., Int. Ed. 2002, 41, 2584–2587.
(b) Nakayama, A.; Kogure, N.; Kitajima, M.; Takayama, H. Angew.
Chem., Int. Ed. 2011, 50, 8025–8027.
(b) Suarez-Moreno, G. V.; Gonzalez-Zamora, E.; Mendez, F. Org. Lett.
2011, 13, 6358–6561. See also: (c) Boger, D. L. Chem. Rev. 1986, 86, 781–
793.
(17) For similar observations and a discussion on relative rates of
€
€
(13) (a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1997, 119, 8738–8739. (b) Ikariya, T.; Blacker, A. J.
Acc. Chem. Res. 2007, 40, 1300–1308.
cycloaddition/cycloreversion, see: (a) Konig, H.; Graf, F.; Weberndorfer,
V. Liebigs Ann. Chem. 1981, 668–682. (b) Liotta, D.; Saindane, M.; Ott, W.
Tetrahedron Lett. 1983, 24, 2473–2476.
B
Org. Lett., Vol. XX, No. XX, XXXX