amide carbonyl atoms are predisposed introvertively.
These macrocyclic oligoamides with six residues and their
derivatives serve as highly selective receptors for accom-
modatingtheguanidinium ion5 and conductingtransmem-
brane pores in ion-channel study.6
We recently revealed the unusually high efficient kinetic
macrocyclization that is rare for macrocycle formation
involving a large number of reacting units.3b Furthermore,
these macrocycles carrying linear alkyl side chains exhibit a
strong preference for directional self-assembly in both
polar and nonpolar solvents.3e With the hydrophilic inter-
nal pores or channel, these macrocycles are also expected
to interact with metal ions or hydrogen bond donors.
This has been demonstrated by our finding that cyclo-
[6]aramides, as we named it for brevity, function as an
excellent extractant in the separation of lanthanide and
thorium elements.7
Despite much progress made in using secondary ammo-
nium salts for the preparation of hostꢁguest complexes
with many 3D macrocycles including crown ethers,8
cucurbiturils,9 calixarenes,10 and pillararenes,11 as well as
pore-containingaromaticoligoamides,12 thecomplexation
between shape-persistent 2D macrocycles and secondary
ammonium salts is rare.13 To construct supramolecular
architecture such as rotaxane, the binding affinity between
host and secondary ammonium salts is among one of the
most important parameters for evaluating the complexing
ability of macrocyclic hosts. The earliest report using
benzo-24-crown-8 only afforded a binding constant of
135ꢁ261 Mꢁ1 in acetone.14 Recently, use of a smaller
crown analog, benzo-21-crown-7, led to the increased
value of 527ꢁ1062 Mꢁ1 in the same solvent.8b In chloro-
form, the calix[6]arene10 derivative and pillar[5]arene11a
only provided the association affinity corresponding
to binding constants of 3.5 ꢀ 104 and 1.09 ꢀ 103 Mꢁ1
,
respectively. Further enhancement of the binding ability in
solvents, particularly in polar surroundings, is still highly
demanding. In addition, severe aggregation often leads to
issues concerning low solubility and difficulty in structural
characterization. This impedes greatly applications of
aromatic oligoamide macrocyles with six residues, where
nonaggregational ability is important for hostꢁguest
chemistry.5b
Herein we report on nonaggregational, soluble macro-
cycle 1a which is realized simply by replacing linear alkyl
groups with branched side chains and its binding toward
various secondary ammonium hexafluorophosphates
2aꢁe in moderately polar solvent, acetone (Figure 1).
The binding process is switchable in an on-and-off manner
by adding a silver ion and chloride anion. Besides tunable
complexation, a macrocyclic effect was observed by com-
paring its corresponding open-chain anologes, i.e., penta-
mer 3a and 3b. We are not aware of the examples of
binding secondary ammonium salts with aromatic oligoa-
mide macrocycles with full amide linkage. A high binding
constant has been achieved in this study, which is surpass-
ing the known values recorded to date.
(3) (a) Yuan, L. H.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu,
D. G.; Guo, H.; Gong, B. J. Am. Chem. Soc. 2004, 126, 11120. (b) Feng,
W.; Yamato, K.; Yang, L. Q.; Ferguson, J. S.; Zhong, L. J.; Zou, S. L.;
Yuan, L. H.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2009, 131, 2629.
(c) Yang, L. Q.; Zhong, L. J.; Yamato, K.; Zhang, X. H.; Feng, W.;
Deng, P. C.; Yuan, L. H.; Zeng, X. C.; Gong, B. New J. Chem. 2009, 33,
729. (d) Zou, S. L.; He, Y. Z.; Yang, Y. A.; Zhao, Y.; Yuan, L. H.; Feng,
W.; Yamato, K.; Gong, B. Synlett. 2009, 9, 1437. (e) Yang, Y. A.; Feng,
W.; Hu, J. C.; Zou, S. L.; Gao, R. Z.; Yamato, K.; Kline, M.; Cai, Z. H.;
Gao, Y.; Wang, Y. B.; Li, L. B.; Yang, Y. L.; Yuan, L. H.; Zeng, X. C.;
Gong, B. J. Am. Chem. Soc. 2011, 133, 18590. (f) Wang, Y. B.; Li, Y. B.;
Luo, Y.; Xu, M.; Zhang, X. M.; Guo, Y. Y.; Wei, G. H.; Yuan, L. H.;
Gong, B.; Yang, Y. L.; Wang, C. ChemPhysChem 2012, 13, 3598.
(4) (a) Li, F.; Gan, Q.; Xue, L.; Wang, Z. M.; Jiang, H. Tetrahedron
Instead of modifying the backbone via introducing
substituents,5b it was reasoned that introducing steric
hindrance around the macrocyclic periphery should lead
to altered association ability and thus decreased aggrega-
tion. Such a possibility was first explored by macrocycle 1a
that contains hindered groups.15 Much greater solubility
was found for 1a (>100 mM) compared to 1b (25 mM) in
chloroform. Surprisingly, sharp signals for 1a were ob-
served in the 1H NMR spectra in CDCl3 or CD3COCD3.15
Previous results for cyclo[6]aramides, e.g., 1b, bearing
linear alkyl side chains revealed the severely broadened
1H NMR signals due to strong aggregation.3e In addition,
€
Lett. 2009, 50, 2367. (b) Dzyuba, E. V.; Kaufmann, L.; Low, N. L.;
Meyer, A. K.; Winkler, H. D. F.; Rissanen, K.; Schalley, C. A. Org. Lett.
2011, 13, 4838.
(5) (a) Sanford, A. R.; Yuan, L. H.; Feng, W.; Yamato, K.; Flowers,
R. A.; Gong, B. Chem. Commun. 2005, 41, 4720. (b) Wu, X. X.; Liang,
G. X.; Ji, G.; Fun, H. K.; He, L.; Gong, B. Chem. Commun. 2012, 48,
2228.
(6) Helsel, A. J.; Brown, A. L.; Yamato, K.; Feng, W.; Yuan, L. H.;
Clements, A. J.; Harding, S. V.; Szabo, G.; Shao, Z. F.; Gong, B. J. Am.
Chem. Soc. 2008, 130, 15784.
(7) Zhong, L. J.; Chen, L.; Feng, W.; Zou, S. L.; Yang, Y. Y.; Liu, N.;
Yuan, L. H. J. Incl. Phenom. Macrocycl. Chem. 2012, 63, 4079.
(8) (a) Zong, Q. S.; Zhang, C.; Chen, C. F. Org. Lett. 2006, 8, 1859. (b)
Zhang, C. J.; Li, S. J.; Zhang, J. Q.; Zhu, K. L.; Li, N.; Huang, F. H. Org.
Lett. 2007, 9, 5553. (c) Zhang, Z. J.; Zhang, H. Y.; Wang, H.; Liu, Y.
Angew. Chem., Int. Ed. 2011, 50, 10834. (d) Hsueh, S. Y.; Ko, J. L.; Lai,
C. C.; Liu, Y. H.; Peng, S. M.; Chiu, S. H. Angew. Chem., Int. Ed. 2011,
50, 6643.
1
the concentration-dependent H NMR experiments dis-
closed no shifts of all protons of 1a from 10 to 0.3 mM,15
indicating that no aggregation occurred. Macrocycle 1c,
with shorter branched side chains, gave signals that are not
so sharp compared to those of 1a.15 In stark constrast, 1d
bearing linear n-octyl groups was actually insoluble in the
same solvent.3a The nonaggregational behavior of 1a was
further confirmed by UVꢁvis spectra and dynamic light
scattering (DLS) techniques.15 As expected, no blue or red
shift was found in the concentration-dependent UVꢁvis
(9) (a) Lee, J. W.; Kim, K.; Kim, K. Chem. Commun. 2001, 37, 1042.
ꢀ
(b) Marquez, C.; Hudgins, R. R.; Nau, W. M. J. Am. Chem. Soc. 2004,
126, 5806. (c) Kim, S. K.; Park, K. M.; Singha, K.; Kim, J.; Ahn, Y.;
Kim, K.; Kim, W. J. Chem. Commun. 2010, 46, 692.
(10) Gaeta, C.; Troisi, F.; Neri, P. Org. Lett. 2010, 12, 2092.
(11) (a) Han, C. Y.; Yu, G. C.; Zheng, B.; Huang, F. H. Org. Lett.
2012, 14, 1712. (b) Li, C. J.; Shu, X. Y.; Li, J.; Fan, J. Z.; Chen, Z. X.;
Weng, L. H.; Jia, X. S. Org. Lett. 2012, 14, 4126.
(12) (a) Li, C.; Ren, S, F.; Hou, J. L.; Yi, H. P.; Zhu, S. Z.; Jiang,
X. K.; Li, Z. T. Angew. Chem., Int. Ed. 2005, 44, 5725. (b) Gan, Q.;
ꢀ
Ferrand, Y.; Bao, C. Y.; Kauffmann, B.; Grelard, A.; Jiang, H.; Huc, I.
(14) Ashton, P. R.; Chrystal, E. J. T.; Glink, P.; Menzer, T. S.;
Schiavo, C.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.;
Williams, D. J. Chem.;Eur. J. 1996, 2, 709.
Science 2011, 331, 1172.
(13) Xu, X. N.; Wang, L.; Wang, G. T.; Lin, J. B.; Li, G. Y.; Jiang,
X. K.; Li, Z. T. Chem.;Eur. J. 2009, 15, 5763.
(15) See the Supporting Information for details.
B
Org. Lett., Vol. XX, No. XX, XXXX