10.1002/anie.201914164
Angewandte Chemie International Edition
RESEARCH ARTICLE
at around 220 nm with shoulder at 215 nm. This implies that
both the TAAC products adopt helical orientation in the solid-
states. However, the random polymer made by dissolving the
TAAC product in dichloromethane followed by evaporation
showed no regular shape (Figure S13, SI). This clearly shows
the importance of topochemical reaction in dictating the packing
of the polymers. The polymers have been found to have helical
nature in solution (Figure S14, SI).
Keywords: Click reaction • Helical polymer • Polysaccharide •
Topochemical reaction • Trehalose
1.
a) Polysaccharides in medicinal and pharmaceutical applications (Ed.: V.
I. Popa), iSmithers, United Kingdom, 2011; b) J. Huang, P. R. Chang, A.
Dufresne in Polysaccharide-based nanocrystals (Eds.: J. Huang, P. R.
Chang, N. Lin, A. Dufresne), WILEY-VCH, Weinheim, 2015, pp. 1-
8.frauen
2.
3.
A. B. Richards, S. Krakowka, L. B. Dexter, H. Schmid, A. P. M.
Wolterbeek, D. H. Waalkens-Berendsen, A. Shigoyuki, M. Kurimoto,
Food Chem. Toxicol. 2002, 40, 871-898.
a) J. H. Crowe, L. M. Crowe, D. Chapman, Science 1984, 17, 701-703;
b) M. Sola-Penna, J. R. Meyer-Fernandes, Arch. Biochem. Biophys.
1998, 360, 10-14; c) R. D. Lins, C. S. Pereira, P. H. Hünenberger,
Proteins 2004, 55, 177-186; d) S. B. Engelsen, S. J. Pérez, J. Phys.
Chem. B 2000, 104, 9301-9311.
4.
a) M. S. Messina, J. H. Ko, Z. Yang, M. J. Strouse, K. N. Houk, H. D.
Maynard, Polym. Chem. 2017, 8, 4781-4788; b) J. Lee, E.-W. Lin, U. Y.
Lau, J. L. Hedrick, E. Bat, H. D. Maynard, Biomacromolecules 2013, 14,
2561-2569; c) R. J. Mancini, J. Lee, H. D. Maynard, J. Am. Chem. Soc.
2012, 134, 8474–8479; d) J. Lee, J. H. Ko, E.-W. Lin, P. Wallace, F.
Ruch, H. D. Maynard, Polym. Chem. 2015, 6, 3443–3448; e) E. Bat, J.
Lee, U. Y. Lau, H. D. Maynard, Nat. Commun. 2015, 6, 6654; f) E. M.
Pelegri-O’Day, S. J. Paluck, H. D. Maynard, J. Am. Chem. Soc. 2017,
139, 1145–1154; g) Y. Liu, J. Lee, K. M. Mansfield, J. H. Ko, S. Sallam,
C. Wesdemiotis, H. D. Maynard, Bioconjugate Chem. 2017, 28, 836–
845; h) U. Y. Lau, S. S. Saxer, J. Lee, E. Bat, H. D. Maynard, ACS Nano
2016, 10, 723–729.
5.
6.
M. Wada, Y. Miyazawa, Y. Miura, Polym. Chem. 2011, 2, 1822–1829.
A. Sizovs, L. Xue, Z. P. Tolstyka, N. P. Ingle, Y. Wu, M. Cortez, T. M.
Reineke, J. Am. Chem. Soc. 2013, 135, 15417–15424.
Figure 6. A) TAAC-reaction path showing the probable formation of helical
polymers (hydrogen atoms are removed for clarity). (b, c) CD spectra (KBr
pellet method) of the polymers obtained from form I (b) and form II (c) showing
helical orientation in solid state.
7.
a) Z. P. Tolstyka, H. Phillips, M. Cortez, Y. Wu, N. Ingle, J. B. Bell, P. B.
Hackett, T. M. Reineke, ACS Biomater. Sci. Eng. 2016, 2, 43–55; b) K.
Kizjakina, J. M. Bryson, G. Grandinetti, T. M. Reineke, Biomaterials 2012,
33, 1851-1862.
Conclusion
8.
9.
S. Srinivasachari, Y. Liu, G. Zhang, L. Prevette, T. M. Reineke, J. Am.
Chem. Soc. 2006, 128, 8176-8184.
N. Teramoto, M. Shibata, Polym. Adv. Technol. 2007, 18, 971-977.
In summary, we have synthesized an unsymmetrical α,α-
trehalose derivative decorated with alkyne and azide as a
monomer for TAAC polymerization. The monomer crystallized in
two different forms viz., form I and form II having similar packing
except for the presence of chloroform in the crystal lattice in the
latter. While Form I showed a reactive arrangement, the
chloroform molecules blocked the attainment of reactive
conformation in form II. However, upon heating, both the forms
underwent TAAC polymerization to give helically ordered
triazole-linked linear trehalose polymers. This is the first report
on the polymerization of an unsymmetrically substituted
trehalose monomer by topochemical polymerization. Solution-
phase polymerization of sugar-based monomers poses several
difficulties such as incomplete polymerization, necessity of metal
catalysts which are difficult to remove, difficult purification, poor
yield etc. This study demonstrates that topochemical reactions
can be exploited for circumventing such problems associated
with solution-phase synthesis.
10. M. Panza, S. G. Pistorio, K. J. Stine, A. V. Demchenko, Chem. Rev.
2018, 118, 8105-8150.
11. a) K. Biradha, R. Santra, Chem. Soc. Rev. 2013, 42, 950-967; b) V.
Ramamurthy, J. Sivaguru, Chem. Rev. 2016, 116, 9914-9993; c) G. J. M.
Schmidt, Pure Appl. Chem. 1971, 27, 647-678; d) K. Hema, K. M.
Sureshan, CrystEngComm 2018, 20, 1478-1482; e) H. Chen, B.-B. Ni, F.
Gao, Y. Ma, Green Chem. 2012, 14, 2703-2705; f) S. M. Oburn, D. C.
Swenson, S. V. S. Mariappan and L. R. MacGillivray, J. Am. Chem. Soc.,
2017, 139, 8452-8454; g) M. A. Sinnwell, L. R. MacGillivray, Angew.
Chem. Int. Ed. 2016, 55, 3477-3480; Angew. Chem. 2016, 128, 3538-
3541; h) K. M. Hutchins, J. C. Sumrak, L. R. MacGillivray, Org. Lett.
2014, 16, 1052-1055; i) G. S. Papaefstathiou, A. J. E. Duncan, L. R.
MacGillivray, Chem. Commun. 2014, 50, 15960-15962; j) G. Campillo-
Alvarado, A. D. Brannan, D. C. Swenson, L. R. MacGillivray, Org. Lett.
2018, 20, 5490-5492; k) G. Campillo-Alvarado, K. P. D'mello, D. C.
Swenson, S. V. S. Mariappan, H. Höpfl, H. Morales-Rojas, L. R.
MacGillivray, Angew. Chem. Int. Ed. 2019, 58, 5413-5416; Angew.
Chem. 2019, 131, 5467-5470; l) A. Natarajan, C. K. Tsai, S. I. Khan, P.
McCarren, K. N. Houk, M. A. Garcia-Garibay, J. Am. Chem. Soc., 2007,
129, 9846-9847; m) T. S. Chung, S. A. Lopez, K. N. Houk, M. A. Garcia-
Garibay, Org. Lett. 2015, 17, 4568-4571; n) S. Khorasani, D. S. Botes, M.
A. Fernandes, D. C. Levendis, CrystEngComm 2015, 17, 8933-8945; o)
M. K. Mishra, A. Mukherjee, U. Ramamurty, G. R. Desiraju, IUCrJ, 2015,
2, 653-660; p) F. Spinelli, S. d’ Agostino, P. Taddei, C. D. Jones, J. W.
Steed, F. Grepioni, Dalton Trans. 2018, 47, 5725-5733; q) S. Kusaka, A.
Kiyose, H. Sato, Y. Hijikata, A. Hori, Y. Ma, R. Matsuda, J. Am. Chem.
Soc. 2019, 141, 15742-15746; r) F.-L. Hu, Y. Mi, C. Zhu, B. F. Abrahams,
Acknowledgements
KMS thank the Department of Science and Technology (DST)
for a SwarnaJayanti Fellowship.
This article is protected by copyright. All rights reserved.