cross-coupling reactions with carbenes,10 especially the
introduction of N-tosyl hydrazones as carbene precursors
Scheme 1. Reaction Patterns of Pd Carbene Involved Alkene
Synthesis
ꢀ
by Barluenga and Valdes. N-Tosyl hydrazones now are
known as valuable and convenient synthons for carbenes
and are used frequently in both metal-catalyzed and metal-
free cross-coupling reactions.11 However, there are still
limited reaction patterns for the construction of CdC
double bonds from Pd carbenes: (1) the reaction of
benzyl/allyl halides and carbene precursors can deliver styrene
or 1,3-diene derivatives (Scheme 1a);5,6a,8a,b (2) the reac-
tion of aryl halides or terminal alkynes with carbene pre-
cursors bearing β-hydride can construct polysubstituted
alkenes (Scheme 1b);7,8dÀf,9iÀl (3) the reaction of vinyl
halides and carbene precursors can generate an (η3-allyl)-
palladium intermediate, which can be terminated with both
inter- or intramolecular nucleophiles (Scheme 1c).6bÀe
Thus, the exploration of new reaction patterns for Pd
carbene involved reactions is still important and necessary.
Even though significant attention has been paid to
N-tosyl hydrazones as carbene precursors in Pd-catalyzed
cross-coupling reactions over the past decade, examples of
the reactions between alkylpalladium and carbenes are
rare,9f which might be a new way to synthesize functiona-
lized alkenes. The well-developed intramolecular Heck-
type reaction provides a good platform to study the
reaction between carbene and alkylpalladium.12 Despite
the fact that Heck reaction based cascades are very well
known, the integration of the chemistry of a cascade Heck
reactionwithPd carbenesobtainedfrom diazo compounds
or tosyl hydrazones has rarely been explored.6f We rea-
soned that alkylpalladium species B, which was extensively
studied by Overman and co-workers in the control of
further chemoselective transformations,13 could be formed
efficiently via classical oxidative addition and insertion reac-
tions of A (Scheme 1d). Subsequently the reaction of B with
carbenes could deliver the functionalized alkene C via a Pd
carbene migration/insertion and β-hydride elimination process.
We began our initial studies with the readily available
acrylamide 1a14 and benzaldehyde derived N-tosyl hydra-
zone 2a. Delightfully, heating a mixture of 1a and 2.0 equiv
of 2a in the presence of 5 mol % Pd(OAc)2 and 15mol % of
tri(2-furyl)phosphine (TFP) in toluene gave the expected
product 3aa in 73% yield, and no corresponding Z isomer
was detected (Table 1, entry 1). Both THF and CH3CN are
good solvents, with the yields being 95% and 98%,
respectively (entries 2 and 3). However, it was found by
(8) (a) Chen, S.; Wang, J. Chem. Commun. 2008, 4198. (b) Xiao, Q.;
Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2009, 11, 4732. (c)
Zhou, F.; Ye, F.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2010, 132,
13590. (d) Zhao, X.; Wu, G.; Yan, C.; Lu, K.; Li, H.; Zhang, Y.; Wang, J.
Org. Lett. 2010, 12, 5580. (e) Zhou, L.; Ye, F.; Ma, J.; Zhang, Y.; Wang,
J. Angew. Chem., Int. Ed. 2011, 50, 3510. (f) Zhou, L.; Ye, F.; Zhang, Y.;
Wang, J. Org. Lett. 2012, 14, 922.
ꢀ
ꢀ
(9) (a) Albeniz, A. C.; Espinet, P.; Manrique, R.; Perez-Mateo, A.
ꢀ
Angew. Chem., Int. Ed. 2002, 41, 2363. (b) Lopez-Alberca, M. P.;
~
ꢀ
ꢀ
Mancheno, M. J.; Fernandez, I.; Gomez-Gallego, M.; Sierra, M. A.;
Torres, R. Org. Lett. 2007, 9, 1757. (c) Goll, J. M.; Fillion, E. Organo-
metallics 2008, 27, 3622. (d) Zhou, F.; Ding, K.; Cai, Q. Chem. Eur. J.
2011, 17, 12268. (e) Chen, Z.-S.; Duan, X.-H.; Wu, L.-Y.; Ali, S.; Ji,
K.-G.; Zhou, P.-X.; Liu, X.-Y.; Liang, Y.-M. Chem. Eur. J. 2011, 17,
6918. (f) Chen, H.; Huang, L.; Fu, W.; Liu, X.; Jiang, H. Chem. Eur. J.
ꢀ
2012, 18, 10497. (g) Meana, I.; Albeniz, A. C.; Espinet, P. Organome-
ꢀ
tallics 2012, 31, 5494. (h) Meana, I.; Toledo, A.; Albeniz, A. C.; Espinet,
ꢀ
P. Chem. Eur. J. 2012, 18, 7658. (i) Treguier, B.; Hamze, A.; Provot, O.;
Brion, J.-D.; Alami, M. Tetrahedron Lett. 2009, 50, 6549. (j) Brachet, E.;
Hamze, A.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Org. Lett. 2010, 12,
4042. (k) Roche, M.; Hamze, A.; Brion, J.-D.; Alami, M. Org. Lett. 2013,
15, 148. (l) Roche, M.; Hamze, A.; Provot, O.; Brion, J.-D.; Alami, M.
J. Org. Chem. 2013, 78, 445.
1
crude H NMR analysis that the reaction in CH3CN is
cleaner than that in THF, and the isolated product from
the reaction in THF was contaminated with small amounts
of uncharacterized byproducts. Triphenylphosphine (PPh3)
is found to be as efficient as TFP (entry 4), while rac-
BINAP and dppe greatly decrease the reaction rate and
the reaction becomes complicated with prolonged reac-
tion times (entries 5 and 6). In the absence of a palladium
source there was no conversion of 1a. The reaction gave
limited conversion of the iodide to the desired product
(10) For some reviews, see: (a) Zhang, Z.; Wang, J. Tetrahedron 2008,
64, 6577. (b) Franssen, N. M. G.; Walters, A. J. C.; Reek, J. N. H.; de
ꢀ
Bruin, B. Catal. Sci. Technol. 2011, 1, 153. (c) Barluenga, J.; Valdes, C.
Angew. Chem., Int. Ed. 2011, 50, 7486. (d) Zhang, Z.; Zhang, Y.; Wang,
J. ACS Catal. 2011, 1, 1621. (e) Zhang, Y.; Wang, J. Top. Curr. Chem.
2012, 327, 239. (f) Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2011, 1015. (g)
Shao, Z.; Zhang, H. Chem. Soc. Rev. 2012, 41, 560. (h) Xiao, Q.; Zhang,
Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
(11) For the migration/insertion process for Cu carbenes, see: (a)
Zhou, L.; Shi, Y.; Xiao, Q.; Liu, Y.; Ye, F.; Zhang, Y.; Wang, J. Org.
Lett. 2011, 13, 968. (b) Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. J. Am.
Chem. Soc. 2011, 133, 3296. (c) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.;
Wang, J. Angew. Chem., Int. Ed. 2011, 50, 1114. (d) Ye, F.; Ma, X.; Xiao,
Q.; Li, H.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2012, 134, 5742. (e)
Hossain, M. L.; Ye, F.; Zhang, Y.; Wang, J. J. Org. Chem. 2013, 78,
1236.
(13) Oestreich, M.; Dennison, P. R.; Kodanko, J. J.; Overman, L. E.
Angew. Chem., Int. Ed. 2001, 40, 1439.
(14) (a) Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc.
1998, 120, 6500. (b) Evans, P.; Grigg, R.; Ramzan, M. I.; Sridharan, V.;
York, M. Tetrahedron Lett. 1999, 40, 3021.
(12) Tsuji, J. Palladium Reagents and CatalysisÀNew Perspectives for
the 21st Century; Wiley: Chichester, U.K., 2004; pp 105À430.
Org. Lett., Vol. 15, No. 18, 2013
4815