4
Tetrahedron Letters
the mixture was poured into 200 mL of water to give a clear
13.
(a) Thummel, R. P. Synlett 1992, 1. (b) Eckert, H. Angew.
Chem. Int. Ed. 1981, 20, 208. (c) Gladiali, S.; Chelucci, G.;
Mudadu, M. S.; Gastaut, M. A.; Thummel, R. P. J. Org.
Chem. 2001, 66, 400.
(a) Cheng C. C.; Yan S. J. Org. React. 1982, 28, 37. (b)
Akbari, J.; Heydari, A.; Kalhor, H. R.; Kohan, S. A. J. Comb.
Chem. 2010, 12, 137.
(a) Sterkowski L.; Czamy A. J. Fluorine Chem. 2000, 104,
281. (b) Ghassamipour, S.; Sardarian, A. R. Tetrahedron Lett.
2009, 50, 514.
(a) Hu Y.-Z.; Zang G.; Thummel R. P. Org. Lett. 2003, 5,
2251. (b) Hasaninejad, A.; Zare, A.; Shekouhy, M.; Ameri-
Rad, J. Green Chem. 2011, 13, 958.
(a) Arcadi A.; Chiarini M.; Di Giuseppe, S.; Marinelli, F.
Synlett 2003, 203. (b) McNaughton B. R.; Miller B. L. Org.
Lett. 2003, 5, 4257.
Walser A., Flyll T., Fryer R. I. J. Heterocycl. Chem. 1975,
12, 737.
De, S. K.; Gibbs, R. Tetrahedron Lett. 2005, 46, 1647.
Arumugam P.; Karthikeyan, G.; Atchudan R.; Muralidharan
D.; Perumal P. T. Chem. Lett. 2005, 314.
(a) Varala, R.; Enugala R.; Adapa S. R. Synthesis 2006,
3825. (b) Palimkar, S. S.; Siddiqui, S. A.; Daniel, T.; Lahoti,
R. J.; Srinivasan, K. V. J. Org. Chem. 2003, 68, 9371.
(a) Sridharan, V.; Ribelles, P.; Ramos, M. T.; Menendez, J.
C. J. Org. Chem. 2009, 74, 5715. (b) Bose, D. S.; Kumar R.
K. Tetrahedron Lett. 2006, 47, 813. (c) Wu, J.; Xia, H. G.;
Gao, K. Org. Biomol. Chem. 2006, 4, 126.
(a) Genovese, S.; Epifano, F.; Marcotullio, M. C.;
Pelucchini, C.; Curini, M. Tetrahedron Lett. 2011, 52, 3474.
(b) Soleimani, E.; Khodaei, M. M.; Batooie, N.; Samadi, S.
Chem. Pharm. Bull. 2010, 58, 212. (c) Yadav J. S.; Reddy B.
V. S.; Premlatha, K. Synlett 2004, 963.
(a) Fehnel, E. A. J. Org. Chem. 1966, 31, 2899; (b)
Strekowski, L.; Czarny, A.; Lee, H. J. Fluor. Chem. 2000,
104, 281; (c) Suzuki, M.; Iwasaki, H.; Fujikawa, Y.;
Kitahara, M.; Sakashita, M.; Sakoda, R. Bioorg. Med. Chem.
2001, 9, 2727; (d) Cheng, C. C.; Yan, S. J. Org React. 1982,
28, 37.
(a) Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.
N.; Hayashi, S.; Domen, K. Angew. Chem. Int. Ed. 2004, 43,
2955. (b) Toda, M.;Takagaki, A.; Okamura, M.; Kondo, J. N.;
Hayashi, S.; Domen, K.; Hara, M. Nature 2005, 438, 178. (c)
Takagaki, A.; Toda, M.; Okamura, M.; Kondo, J. N.;
Hayashi, S.; Domen, K.; Hara, M. Catal. Today. 2006, 116,
157. (d) Zong.; M. H. Duan, Z. Q.; Lou, W. Y.; Smith, T. J.;
Wu, H. Green Chem. 2007, 9, 434.
(a) Prabhavathi Devi, B. L. A.; Gangadhar, K. N.; Sai Prasad,
P. S.; Jagannadh, B.; Prasad, R. B. N. ChemSusChem. 2009,
2, 617. (b) Shaabani, A.; Maleki, A. Applied Catalysis A:
General 2007, 331, 149. (c) Shaabani, A.; Rahmati, A.; Badri,
Z. Catalysis Commun. 2008, 9, 13. (d) Kumar, A.; Srivastava,
S.; Gupta, G. Tetrahedron Lett. 2010, 51, 57. (e) Kumar, A.;
Gupta, G.; Srivastava, S. J. Comb. Chem. 2010, 12, 458.
(a) Reddy, B. V. S.; Venkateswarlu, A.; Kumar, G. G. K. S.
N.; Vinu, A. Tetrahedron Lett. 2010, 51, 6511. (b) Reddy, B.
V. S.; Venkateswarlu, A.; Madan, Ch.; Vinu, A. Tetrahedron
Lett. 2011, 52, 1891. (c) Yadav, J. S.; Reddy, B. V. S.; Chaya,
D. N.; Kumar, G. G. K. S. N.; Naresh, P.; Jagadeesh, B.
Tetrahedron Lett. 2009, 50, 1799. (d) Yadav, J. S.; Reddy, B.
V. S.; Satheesh, G. Tetrahedron Lett. 2004, 45, 3673. (e)
Yadav, J. S.; Reddy, B. V. S.; M Srinivas, M.; Prabhakar, A.;
Jagadeesh, B. Tetrahedron Lett. 2004, 45, 6033. (f) Yadav, J.
S.; Reddy, B. V. S.; Sunitha, V.; Reddy, K. S.; Ramakrishna,
K. V. S. Tetrahedron Lett. 2004, 45, 7947.
brown solution, and then 75 mL of 2.5 N sodium hydroxide
was added. The resulting sodium salt of sulfated chitosan was
then precipitated with 500 mL of ethanol. The precipitate was
again dissolved in 200 mL of water and then subjected to
dialysis in a seamless tubing'' for three days against distilled
water. After concentration of the solution under reduced
pressure to 100 mL, a solution of sat. sodium chloride (10
mL) was added and the resulting mixture was then
precipitated as its sodium salt with 150 mL of ethanol; yield
3.0 g [α]D -23 (c 1.5, water). See ref: (a) Wolfrom, M. L.;
Shen Han, T. M. J. Am. Chem. Soc. 1959, 81, 1764. (b)
Hayashi, J. US 5229504A. The number of active acid sites
(H+) of the chitosan-SO3H was determined by acid-base
titration and it was found to be 0.50 m equiv/g. This amount
corresponds to about 0.91% of the sulfur content,
demonstrating that most of the sulfur species are present in
the form of sulfonic acid groups. The degree of sulfonation
was determined to be 1.17 and 1.39 respectively after 1 h and
20 h by elemental analysis.
General procedure: A mixture of 2-aminoarylketone (1.0
mmol), -methyleneketone (1.0 mmol) and chitosan-SO3H
(obtained from Aldrich) (100 mg) in ethanol (5 mL) was
stirred at 50 ºC for the specified time (see Table 1). After
completion, as monitored by TLC, the catalyst was separated
by filtration and the residue was washed with ethanol (5 mL).
The combined organic layers were concentrated under
reduced pressure and the crude product was purified by silica
gel column chromatography using ethyl acetate–n-hexane
(1:9) as eluent to afford the pure quinoline derivative. The
products 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3k, 3j, 3m are
known in literature.30
14.
15.
16.
17.
18.
19.
20.
29.
21.
22.
23.
24.
Spectral data for the new products:
(4-Methyl-2-phenylquinolin-3-yl)(phenyl)methanone (3i):
1H NMR (CDCl3, 500 MHz): δ 2.63 (s, 3H), 6.66-6.61 (m,
3H), 7.31-7.22 (m, 5H), 7.62 (d, J = 8.3 Hz, 1H), 7.70 (dd, J
= 6.8, 1.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 8.12 (d, J = 8.3
Hz, 1H), 8.30 (d, J = 8.0 Hz, 1H); 13C NMR (CDCl3, 75
MHz): δ 200.6, 156.0, 150.2, 137.4, 134.3, 133.5, 131.9,
130.3, 129.3, 128.6,128.5, 128.1, 127.1, 123.9, 118.1, 117.4,
27.8. IR (KBr): υmax 3423, 2918, 2853, 1678, 1560, 1383,
1211, 1123, 788, 707 ESI-MS: m/z 324(M+H)
25.
6-Nitro-2,4-diphenylquinolin-3-yl)(phenyl)methanone
1
(3n): H NMR (300 MHz, CDCl3): δ 7.23-7.16 (m, 2H),
7.39-7.26 (m, 7H), 7.50 (d, J = 7.8 Hz, 3H), 7.68-7.62 (m,
3H), 8.39 (d, J = 8.0 Hz, 1H), 8.52 (dd, J = 8.0, 2.3 Hz,,
1H), 8.58 (d, J = 2.3 Hz, 1H); 13C NMR (75 MHz, CDCl3):
δ 123.3, 124.9, 128.1, 129.0, 129.1, 129.3, 131.5, 133.3,
137.6, 138.9, 148.8, 149.0, 159.7, 170.8, 195.9; IR (KBr):
υmax 3425, 2918, 2853, 1688, 1560, 1420, 1211, 1023, 858,
607; ESI-MS: m/z: 440 (M+Na).
26.
27.
Ethyl
2-ethyl-6-nitro-4-phenylquinoline-3-carboxylate
(3o): 1H NMR (300 MHz, CDCl3): δ 0.98 (t, J = 7.0 Hz, 3H),
2.84 (s, 3H), 2.84 (q, J = 7.0 Hz, 2H), 7.35-7.40 (m, 2H),
7.53-7.58 (m, 3H), 8.21 (d, J = 9.0 Hz, 1H), 8.49 (dd, J = 9.0,
2.4 Hz, 1H), 8.54 (d, J = 2.0 Hz, 1H); 13C NMR (75 MHz,
CDCl3): δ 13.6, 24.0, 61.7, 123.4, 123.7, 128.7, 129.2, 129.3,
134.1, 145.6, 148.0, 149.6, 158.7, 167.4.; IR (KBr): υmax
3423, 2918, 2853, 1678, 1560, 1383, 1211, 1123, 788, 707;
ESI-MS: m/z: 359 (M+Na).
28.
Preparation of chitosan-SO3H: A freshly distilled, pyridine
(60 mL) was placed in a three-necked flask at 0 ˚C. To this
cold solution, 10 mL of chlorosulfonic acid was added slowly
through a dropping funnel over a period of 30-40 min. To this
mixture, 40 mL of a suspension of chitosan (3.5 g) in
pyridine was added and the whole mixture was heated on a
boiling water-bath for 1 h. After cooling to room temperature,