ChemComm
Communication
The reaction may be easily conducted on a gram scale of of China (2009CB825300) is greatly appreciated. We thank
substrate 1a using aldehyde 2m. After removal of Cu(I) by simple Qiankun Li in this group for reproducing the results of the
filtration, the 2-hydroxy-2-propyl group in 4am was easily removed preparation of 4af, 4ai in Table 1 and 4bm in Scheme 3.
by its treatment with 3 equivalents of NaOH in refluxing toluene10
affording terminal propargylic amine 5 in 77% combined yield
Notes and references
starting from 1a. Sonogashira cross-coupling11a,b of 5 with aryl
1 (a) M. Konishi, H. Ohkuma, T. Tsuno, T. Oki, G. D. VanDuyne and
J. Clardy, J. Am. Chem. Soc., 1990, 112, 3715; (b) M. A. Huffman,
N. Yasuda, A. E. DeCamp and E. J. J. Grabowski, J. Org. Chem., 1995,
iodide in the presence of CuI (2 mol%), Pd(OAc)2 (1 mol%) and
PPh3 (3 mol%) furnished the phenylacetylene derivative 6 in 70%
yield and 98% ee. Treating 5 with n-BuLi in THF at À78 1C
60, 1590; (c) G. S. Kauffman, G. D. Harris, R. L. Dorow, B. R. P. Stone,
followed by the reaction with paraformaldehyde12 provided the
R. L. Parsons Jr., J. A. Pesti, N. A. Magnus, J. M. Fortunak,
P. N. Confalone and W. A. Nugent, Org. Lett., 2000, 2, 3119;
(d) B. M. Trost, C. K. Chung and A. B. Pinkerton, Angew. Chem.,
corresponding alcohol 4bm in 98% ee. Finally, the reaction of the
alkynyllithium derived from 5 with methyl chloroformate yielded
2-alkynoates 7 in 86% yield and 98% ee (Scheme 3).
Int. Ed., 2004, 43, 4327; (e) J.-X. Ji, J. Wu and A. S. C. Chan, Proc. Natl.
Acad. Sci. U. S. A., 2005, 102, 11196.
2 For selected examples, see: (a) M. Shibasaki, Y. Ishida, G. Iwasaki
and T. Iimori, J. Org. Chem., 1987, 52, 3488; (b) N. Miyachi, F. Kanda
and M. Shibasaki, J. Org. Chem., 1989, 54, 3511; (c) A. Hoepping,
K. M. Johnson, C. George, J. Flippen-Anderson and A. P. Kozikowski,
J. Med. Chem., 2000, 43, 2064.
3 For selected examples, see: (a) T. Yoon, M. D. Shair, S. J. Danishefsky
and G. K. Shulte, J. Org. Chem., 1994, 59, 3752; (b) B. Jiang and
M. Xu, Angew. Chem., Int. Ed., 2004, 43, 2543; (c) J. J. Fleming and
J. Du Bois, J. Am. Chem. Soc., 2006, 128, 3926.
4 C. Swithenbank, P. J. McNulty and K. L. Viste, J. Agric. Food Chem.,
1971, 19, 417.
5 For selected examples of synthesis of axially allenes from chiral
propargylic amines, see: (a) V. K.-Y. Lo, M.-K. Wong and C.-M. Che,
Org. Lett., 2008, 10, 517; (b) V. K.-Y. Lo, C.-Y. Zhou, M.-K. Wong and
C.-M. Che, Chem. Commun., 2010, 46, 213; (c) J. Ye, S. Li, B. Chen,
W. Fan, J. Kuang, J. Liu, Y. Liu, B. Miao, B. Wan, Y. Wang, X. Xie,
Q. Yu, W. Yuan and S. Ma, Org. Lett., 2012, 14, 1346; (d) J. Ye, W. Fan
and S. Ma, Chem.–Eur. J., 2013, 19, 716.
6 For recent reviews, see: (a) P. G. Gozzi, R. Hilgraf and
N. Zimmermann, Eur. J. Org. Chem., 2004, 4095; (b) L. Zani and
C. Bolm, Chem. Commun., 2006, 4263; (c) B. M. Trost and
A. H. Weiss, Adv. Synth. Catal., 2009, 351, 963; (d) V. A. Peshkov,
O. P. Pereshivko and E. V. Eycken, Chem. Soc. Rev., 2012, 41, 3790.
7 For examples of Cu-catalyzed asymmetric three-component reaction
for chiral propargylic amines, see: (a) C. Wei and C.-J. Li, J. Am. Chem.
Soc., 2002, 124, 5638; (b) C. Wei, J. T. Mague and C.-J. Li, Proc. Natl.
Acad. Sci. U. S. A., 2004, 101, 5749; (c) A. Bisai and V. K. Singh, Org.
Lett., 2006, 8, 2405; (d) Z. Shao, X. Pu, X. Li, B. Fan and A. S. C. Chan,
Tetrahedron: Asymmetry, 2009, 20, 225; (e) S. Nakamura, M. Ohara,
Y. Nakamura, N. Shibata and T. Toru, Chem.–Eur. J., 2010, 16, 2360;
( f ) N. Gommermann, C. Koradin, K. Polborn and P. Knochel, Angew.
Chem., Int. Ed., 2003, 42, 5763; (g) N. Gommermann and P. Knochel,
Chem. Commun., 2004, 2324; (h) H. Dube, N. Gommermann and
P. Knochel, Synthesis, 2004, 2015; (i) N. Gommermann and
P. Knochel, Tetrahedron, 2005, 61, 11418; ( j) N. Gommermann,
A. Gherig and P. Knochel, Synlett, 2005, 2796; (k) N. Gommermann
and P. Knochel, Synlett, 2005, 2799; (l) N. Gommermann and
P. Knochel, Chem. Commun., 2005, 4175; (m) T. F. Knopfel,
P. Aschwanden, T. Ichikawa, T. Watanabe and E. M. Carreira, Angew.
Chem., Int. Ed., 2004, 43, 5971; (n) P. Aschwanden, C. R. J. Stephenson
and E. M. Carriera, Org. Lett., 2006, 8, 2437.
Scheme 3 The gram-scale reaction of 1a with 2m and transformations of
propargylic amine 5.
In summary, we have developed a highly enantioselective
general synthesis of chiral propargylic amines using 2-methybut-
3-yn-2-ol, a variety of different aldehydes and pyrrolidine in the
presence of CuBr and the (R,R)-N-Pinap ligand. The tertiary
alcohol unit in the terminal alkyne plays a unique role in
ensuring high enantioselectivities. Following a facile fragmenta-
tion reaction involving C–C bond cleavage, the useful terminal
propargylic amines obtained could be further functionalized to
give the corresponding propargylic amine derivatives in good
8 (a) D. L. Musso, M. J. Clarke, J. L. Kelley, G. E. Boswell and G. Chen,
Org. Biomol. Chem., 2003, 1, 498; (b) Y. Zhao, X. Zhou, T. Okamura,
M. Chen, Y. Lu, W.-Y. Sun and J.-Q. Yu, Dalton Trans., 2012, 41, 5889.
9 (a) V. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu and G. Bertand,
Proc. Natl. Acad. Sci. USA, 2007, 104, 13569; (b) M. Melchionna,
M. Nieger and J. Helaja, Chem.–Eur. J., 2010, 16, 8262.
yield and high enantiomeric excess. Further studies including 10 T. X. Neenan and G. M. Whitesides, J. Org. Chem., 1988, 53, 2489.
11 (a) M. Schmittel and H. Ammon, Synlett, 1999, 750; (b) R. R. Tykwinski,
Angew. Chem., Int. Ed., 2003, 42, 1566.
12 M. A. Heuft, S. K. Collins, G. P. A. Yep and A. G. Fallis, Org. Lett.,
their conversion to other useful compounds are underway.
Financial support from the National Natural Science Founda-
tion of China (21232006) and the National Basic Research Program
2001, 3, 2883.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 10175--10177 10177