Journal of the American Chemical Society
Communication
(4) (a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.
(b) Somei, M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73.
(c) Siengalewicz, P.; Rinner, U.; Mulzer, J. Chem. Soc. Rev. 2008, 37,
2676.
(5) (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011,
40, 102. (c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322.
esters and phosphite ester, were also used to replace indoles for
the CCHE reaction. Satisfactorily, the reaction proceeds well
resulting in the formation of the crossing-coupling products
and H2 in moderate to excellent yields (Scheme S1 (SI)).
In summary, we have succeeded in developing a new type of
reaction, cross-coupling hydrogen evolution CCHE, by visible
light catalysis. The cascade reaction is accomplished under an
inert atmosphere by activation of C−H bonds via dehydrogen-
ation that does not require any sacrificial oxidants, and an
equivalent amount of H2 is generated as an only side product.
Combining eosin Y and G-RuO2 as the photosensitizer and the
catalyst, the CCHE reaction undergoes smoothly to afford the
cross-coupling products and H2 in good to excellent yields.
Spectroscopic study and product analysis demonstrate the
photoinduced electron transfer from tertiary amine to eosin Y
to generate [eosin Y]•−, which further delivers an electron to
G-RuO2 for reduction of protons to H2 and regeneration of
eosin Y. This work constitutes the first example of photo-
catalytic dehydrogenative cross-coupling reaction to form a C−
C bond by two different C−H bonds with concomitant
emission of H2. The operationally simple and general mode of
activation is suitable for a broad range of reactants. We hope
this CCHE reaction will become a useful method to construct
C−C bonds for cleaner, safer, and more atom-economic
organic transformation.
(6) (a) Condie, A. G.; Gonzal
Am. Chem. Soc. 2010, 132, 1464. (b) Hari, D. P.; Konig, B. Org. Lett.
2011, 13, 3852. (c) Xie, Z.; Wang, C.; deKrafft, K. E.; Lin, W. J. Am.
́
ez-Gom
́
ez, J. C.; Stephenson, C. R. J. J.
̈
Chem. Soc. 2011, 133, 2056. (d) Mohlmann, L.; Baar, M.; Rieß, J.;
̈
Antonietti, M.; Wang, X.; Blechert, S. Adv. Synth. Catal. 2012, 354,
1909. (e) Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu,
L.-Z. Chem.Eur. J. 2012, 18, 620. (f) To, W.-P.; Tong, G. S.-M.; Lu,
W.; Ma, C.; Liu, J.; Chow, A. L.-F.; Che, C.-M. Angew. Chem., Int. Ed.
2012, 51, 2654. (g) Mitkina, T.; Stanglmair, C.; Setzer, W.; Gruber,
M.; Kisch, H.; Konig, B. Org. Biomol. Chem. 2012, 10, 3556. (h) Zhu,
̈
S.; Rueping, M. Chem. Commun. 2012, 48, 11960. (i) Zhong, J.-J.;
Meng, Q.-Y.; Wang, G.-X.; Liu, Q.; Chen, B.; Feng, K.; Tung, C.-H.;
Wu, L.-Z. Chem.Eur. J. 2013, 19, 6443.
(7) Esswein, A. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022.
(8) (a) Maeda, K.; Saito, N.; Lu, D.; Inoue, Y.; Domen, K. J. Phys.
Chem. C 2007, 111, 4749. (b) Zeng, H. C.; Pang, X. Y. Appl. Catal., B
1997, 13, 113.
(9) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
(10) Joselevich, E.; Willner, I. J. Phys. Chem. 1995, 99, 6903.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, methods, and product character-
ization. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for financial support from the Ministry of
Science and Technology of China (2013CB834804,
2013CB834505, and 2014CB239402), the National Natural
Science Foundation of China (21090343 and 91027041), and
the Chinese Academy of Sciences.
REFERENCES
■
(1) (a) Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthesis;
John Wiley & Sons: New York, 1989; pp 1−91. (b) Newhouse, T.;
Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010.
(2) (a) Li, C.-J. Acc. Chem. Res. 2008, 42, 335. (b) Yeung, C. S.;
Dong, V. M. Chem. Rev. 2011, 111, 1215. (c) Sun, C.-L.; Li, B.-J.; Shi,
Z.-J. Chem. Rev. 2011, 111, 1293. (d) Liu, C.; Zhang, H.; Shi, W.; Lei,
A. Chem. Rev. 2011, 111, 1780.
(3) (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am.
Chem. Soc. 2003, 125, 15312. (b) Li, Z.; Li, C.-J. J. Am. Chem. Soc.
2004, 126, 11810. (c) Stuart, D. R.; Fagnou, K. Science 2007, 316,
1172. (d) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129,
11904. (e) Jia, Y.-X.; Kundig, E. P. Angew. Chem., Int. Ed. 2009, 48,
̈
1636. (f) Shu, X.-Z.; Yang, Y.-F.; Xia, X.-F.; Ji, K.-G.; Liu, X.-Y.; Liang,
Y.-M. Org. Biomol. Chem. 2010, 8, 4077. (g) Leow, D.; Li, G.; Mei, T.-
S.; Yu, J.-Q. Nature 2012, 486, 518. (h) Boess, E.; Schmitz, C.;
Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317. (i) Meng, Q.-Y.;
Liu, Q.; Zhong, J.-J.; Zhang, H.-H.; Li, Z.-J.; Chen, B.; Tung, C.-H.;
Wu, L.-Z. Org. Lett. 2012, 14, 5992.
D
dx.doi.org/10.1021/ja408486v | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX