Chiral Sulfonimides (CSIs) – Chiral Brønsted Acids for Organocatalysis
BINOL. ortho-Lithiation is directed by the sulfonyl groups,
and the resulting dihalides serve as the common precursors
for the aryl-substituted CSIs. The application of these CSIs
and the corresponding conjugated bases[13] in organocata-
lysis is under investigation.
CCDC-771830 (for 1a) and -771831 (for 1d) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, compound characterization data, copies
of the NMR spectra.
Acknowledgments
Figure 1. X-ray structures of 1d.
Financial support from the Faculty Research Grant of Hong Kong
Baptist University (FRG/08–09/II-45) and a Visiting Professorship
from the Research Center of Materials Science of the Nagoya Uni-
versity are gratefully acknowledged.
[1] M. Treskow, J. Neudörfl, R. Giernoth, Eur. J. Org. Chem. 2009,
3693–3697.
[2] P. García-García, F. Lay, P. García-García, C. Rabalakos, B.
List, Angew. Chem. Int. Ed. 2009, 48, 4363–4366.
[3] a) D. W. C. MacMillan, Nature 2008, 455, 304–308; b) B. List,
Chem. Rev. 2007, 107, 5413–5415; c) P. I. Dalko, Enantioselec-
tive Organocatalysis, Wiley-VCH, Weinheim, 2007; d) A.
Berkessel, H. Gröger, Asymmetric Organocatalysis – From Bio-
mimetic Concepts to Applications in Asymmetric Synthesis,
Wiley-VCH, Weinheim, 2005; e) K. N. Houk, B. List, Acc.
Chem. Res. 2004, 37, 487.
[4] a) M. S. Taylor, E. N. Jacobsen, Angew. Chem. Int. Ed. 2006,
45, 1520–1543; b) T. Akiyama, Chem. Rev. 2007, 107, 5744–
5758; c) H. Yamamoto, K. Ishihara, Acid Catalysis in Modern
Organic Synthesis, Wiley-VCH, Weinheim, 2008; d) S.-L. You,
Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190–2201; e) H.
Xu, S. J. Zuend, M. G. Woll, Y. Tao, E. N. Jacobsen, Science
2010, 327, 986–990.
Figure 2. X-ray structures of (R)-CSI-1a.
[5] a) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem.
Int. Ed. 2004, 43, 1566–1568; b) D. Uraguchi, M. Terada, J.
Am. Chem. Soc. 2004, 126, 5356–5357; c) D. Nakashima, H.
Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626–9627; d) M.
Rueping, B. J. Nachtsheim, S. A. Moreth, M. Bolte, Angew.
Chem. Int. Ed. 2008, 47, 593–596.
[6] a) M. Barbero, S. Cadamuro, S. Dughera, P. Venturello, Synlett
2007, 2209–2212; b) M. Barbero, S. Cadamuro, S. Dughera, P.
Venturello, Synthesis 2008, 1379–1388; c) M. Barbero, S. Cada-
muro, S. Dughera, P. Venturello, Synthesis 2008, 3625–3632; d)
M. Barbero, S. Bazzi, S. Cadamuro, S. Dughera, Eur. J. Org.
Chem. 2009, 430–436; e) M. Barbero, S. Cadamuro, A. Deagos-
tino, S. Dughera, P. Larini, E. G. Occhiato, C. Prandi, S. Tab-
asso, R. Vulcano, P. Venturello, Synthesis 2009, 2260–2266; f)
M. Barbero, S. Bazzi, S. Cadamuro, S. Dughera, C. Piccinini,
Synthesis 2010, 315–319.
diiodo CSI in 61% yield together with 29% of the
monoiodo compound. Both dibromo 1e and diiodo CSI 1f
could serve as the common precursors for a series of 3,3Ј-
diaryl-substituted CSIs through coupling reactions.
Suzuki–Miyaura coupling[12] with the corresponding ar-
ylboronic acid resulted in a series of 3,3Ј-diaryl CSIs (1b
and 1g–n) in good yields. It is interested to note that, in the
case of 1-naphthyl-substituted CSI 1n, a mixture of insepa-
rable diastereomers was formed (NMR spectroscopy). By
examining the molecular model, it is clear that, due to the
size of the sulfonyl group, restricted rotation appears be-
tween the 1-naphthyl substituent and the binaphthyl back-
bone.
[7] J. F. King in The Chemistry of Sulphonic Acids, Esters and their
Derivatives (Ed.: S. Patai), John Wiley, New York, 1991, ch. 6,
pp. 249–259.
[8] S. L. MacNeil, O. B. Familoni, V. Snieckus, J. Org. Chem. 2001,
66, 3662–3670.
[9] a) D. Fabbri, G. Delogu, O. D. Lucchi, J. Org. Chem. 1993, 58,
1748–1750; b) U. K. Bandarage, J. Simpson, R. A. J. Smith,
R. T. Weavers, Tetrahedron 1994, 50, 3463–3472; c) S. Cossu,
O. D. Lucchi, D. Fabbri, G. Valle, G. F. Painter, A. J. Smith,
Tetrahedron 1997, 53, 6073–6084; d) J. D. Moseley, R. F. San-
key, O. N. Tang, J. P. Gilday, Tetrahedron 2006, 62, 4685–4689;
Conclusions
In summary, we have developed a general approach to
the synthesis of binaphthyl-based chiral sulfonimides with
aryl substituents at the 3,3Ј-positions starting from racemic
Eur. J. Org. Chem. 2010, 4181–4184
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4183