Fukuhara et al.
JOCArticle
photoproduct through the manipulation of a variety of en-
tropy-related environmental variants such as temperature,5
pressure,6 and solvation,7 which provides us with a unique,
versatile tool for multidimensionally optimizing a photochiro-
genic reaction without using a harsh condition.8 More impor-
tantly, these observations unambiguously revealed the essential
roles of the entropy played in the enantiodifferentiating step
of photochirogenic reaction.
(1) For reviews, see: (a) Rau, H. Chem. Rev. 1983, 83, 535. (b) Inoue, Y.
Chem. Rev. 1992, 92, 741. (c) Pete, J. P. Adv. Photochem. 1996, 21, 135. (d)
Everitt, S. R. L.; Inoue, Y. In Molecular and Supramolecular Photochemistry;
Ramamurthy, V., Schanze, K. S., Eds.; Marcel Dekker: New York, 1999. (e)
Griesbeck, A. G.; Meierhenrich, U. J. Angew. Chem., Int. Ed. 2002, 41, 3147. (f )
Inoue, Y., Ramamurthy, V., Eds. Chiral Photochemistry; Marcel Dekker: New
York, 2004. (g) Inoue, Y. Nature 2005, 436, 1099. (h) M€uller, C.; Bach, T. Aust.
J. Chem. 2008, 61, 537.
From the entropic point of view, supramolecular hosts are
of particular interest,9,10 possessing a highly ordered, inher-
ently low entropic, cavity for confining a guest. Thus, several
groups have exploited a wide range of chiral supramolecular
hosts for photochirogenesis, which include native and mod-
ified cyclodextrins,11,12 biomolecules,13 chirally modified
zeolites,14 hydrogen-bonding templates,15 and chiral nano-
porous materials.16 In the enantiodifferentiating photoi-
somerization of (Z)-cyclooctene included and sensitized
by β-cyclodextrin derivatives with a tethered sensitizing
group,12b,p (E)-isomer was obtained in 46% enantiomeric
excess (ee), which is significantly higher than the practically
zero ee obtained upon direct excitation of (Z)-cyclooctene
included in native β-cyclodextrin.11b Interestingly, the pro-
duct’s ee was independent of the temperature or solvent
composition used, but was nicely correlated with the host
occupancy, suggesting an insignificant role of entropy in the
supramolecular photochirogenesis as was the case with the
photochirogenesis in rigid nanopores of zeolites.14 These
findings may suggest that the supramolecular environment
is not suitable for dynamically controlling a photochirogenic
process, thus limiting the scope of the supramolecular
approach. However, we have demonstrated more recently
that the product’s ee and chiral sense become susceptible to
such entropy-related variants as temperature and solvent in
the enantiodifferentiating photoisomerization mediated by
permethylated 6-O-aroylcyclodextrins, for which the flexible
permethylated cyclodextrin skeleton17 is likely to be respon-
sible.12g,k This contrasting behavior allows us to further
(2) Hoffmann, N. Chem. Rev. 2008, 108, 1052.
(3) Nobel Lectures, see: (a) Knowles, W. S. Angew. Chem., Int. Ed. 2002,
41, 1998. (b) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008. (c) Sharpless,
K. B. Angew. Chem., Int. Ed. 2002, 41, 2024.
(4) Hammond, G. S.; Cole, R. S. J. Am. Chem. Soc. 1965, 87, 3256.
(5) (a) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A. J. Am. Chem. Soc.
1989, 111, 6480. (b) Inoue, Y.; Yokoyama, T.; Yamasaki, N.; Tai, A. Nature
1989, 341, 225. (c) Inoue, Y.; Yamasaki, N.; Yokoyama, T.; Tai, A. J. Org.
Chem. 1992, 57, 1332. (d) Inoue, Y.; Yamasaki, N.; Yokoyama, T.; Tai, A.
J. Org. Chem. 1993, 58, 1011.
(6) (a) Inoue, Y.; Matsushima, E.; Wada, T. J. Am. Chem. Soc. 1998, 120,
10687. (b) Kaneda, M.; Asaoka, S.; Ikeda, H.; Mori, T.; Wada, T.; Inoue, Y.
Chem. Commun. 2002, 1272. (c) Kaneda, M.; Nakamura, A.; Asaoka, S.;
Ikeda, H.; Mori, T.; Wada, T.; Inoue, Y. Org. Biomol. Chem. 2003, 1, 4435.
(7) Inoue, Y.; Ikeda, H.; Kaneda, M.; Sumimura, T.; Everitt, S. R. L.;
Wada, T. J. Am. Chem. Soc. 2000, 122, 406.
(8) (a) Inoue, Y.; Wada, T.; Asaoka, S.; Sato, H.; Pete, J.-P. Chem.
Commun. 2000, 251. (b) Inoue, Y.; Sugahara, N.; Wada, T. Pure Appl. Chem.
2001, 73, 475.
(9) (a) Whiteside, G. M. Sci. Am. 1995, 273, 114. (b) Lehn, J.-M. Supramol.
Chem.; VCH: Weinheim, Germany, 1995. (c) Philip, D.; Stoddart, J. F. Angew.
Chem., Int. Ed. Engl. 1996, 35, 154. (d) Fredericks, J. R.; Hamilton, A. D. In
Comprehensive Supramolecular Chemistry; Atwood, J. L., Davies, J. E. D.,
€
MacNicol, D. D., Vogtle, F., Eds.; Pergamon/Elsevier: Oxford, 1996. (e) Hartley,
J. H.; James, T. D.; Ward, C. J. J. Chem. Soc., Perkin Trans. 1 2000, 3155. (f )
Molecular Machines Special Issue; Acc. Chem. Res. 2001, 34. 409. (g)
Reinhoudt, D. N.; Crego-Calama, M. Science 2002, 295, 2403. (h) Shinkai, S.;
Takeuchi, M. Bull. Chem. Soc. Jpn. 2005, 78, 40. (i) Fukuhara, G.; Madenci, S.;
€
Polkowska, J.; Bastkowski, F.; Klarner, F.-G.; Origane, Y.; Kaneda, M.; Mori, T.;
€
Wada, T.; Inoue, Y. Chem.-Eur. J. 2007, 13, 2473. ( j) Fukuhara, G.; Klarner,
F.-G.; Mori, T.; Wada, T.; Inoue, Y. Photochem. Photobiol. Sci. 2008, 7, 1493 and
references therein.
(10) (a) Inoue, Y., Gokel, G. W., Eds. Cation Binding by Macrocycles;
Marcel Dekker: New York, 1990. (b) Inoue, Y.; Hakushi, T.; Liu, Y.; Tong,
L.-H.; Shen, B.-J.; Jin, D.-S. J. Am. Chem. Soc. 1993, 115, 475. (c) Inoue, Y.; Liu,
Y.; Tong, L.-H.; Shen, B.-J.; Jin, D.-S. J. Am. Chem. Soc. 1993, 115, 10637. (d) Inoue,
Y., Wada, T., Gokel, G. W., Eds. Advances in Supramolecular Chemistry; JAI Press:
Greenwich, C T, 1997. (e) Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1875. (f )
Rekharsky, M. V.; Inoue, Y. In Cyclodextrins and Their Complexes; Helena, D.; , Ed.;
Wiley-VCH: Weinheim, Germany, 2008; pp 199-230.
(11) (a) Rao, V. P.; Turro, N. J. Tetrahedron Lett. 1989, 30, 4641. (b)
Inoue, Y.; Kosaka, S.; Matsumoto, K.; Tsuneishi, H.; Hakushi, T.; Tai, A.;
Nakagawa, K.; Tong, L.-H. J. Photochem. Photobiol., A: Chem. 1993, 71, 61.
(c) Koodanjeri, S.; Joy, A.; Ramamurthy, V. Tetrahedron 2000, 56, 7003. (d)
(13) (a) Wada, T.; Sugahara, N.; Kawano, M.; Inoue, Y. Chem. Lett.
2000, 1174. (b) Wada, T.; Nishijima, M.; Fujisawa, T.; Sugahara, N.;
Mori, T.; Nakamura, A.; Inoue, Y. J. Am. Chem. Soc. 2003, 125, 7492. (c)
Lhiaubet-Vallet, V.; Encinas, S.; Miranda, M. A. J. Am. Chem. Soc. 2005,
127, 12774. (d) Nishijima, M.; Pace, T. C. S.; Nakamura, A.; Mori, T.; Wada,
T.; Bohne, C.; Inoue, Y. J. Org. Chem. 2007, 72, 2707. (e) Nishijima, M.;
Wada, T.; Mori, T.; Pace, T. C. S.; Bohne, C.; Inoue, Y. J. Am. Chem. Soc.
2007, 129, 3478.
(14) (a) Ramamurthy, V. J. Chem. Soc., Chem. Commun. 1998, 1379. (b)
Joy, A.; Scheffer, R.; Ramamurthy, V. Org. Lett. 2000, 2, 119. (c) Turro, N. J.
Acc. Chem. Res. 2000, 33, 637. (d) Wada, T.; Shikimi, M.; Inoue, Y.; Lem, G.;
Turro, N. J. Chem. Commun. 2001, 1864. (e) Chong, K. C. W.; Sivaguru, J.;
Shichi, T.; Yoshimi, Y.; Ramamurthy, V.; Scheffer, J. R. J. Am. Chem. Soc.
2002, 124, 2858. (f ) Sivaguru, J.; Natarajan, A.; Kaanumalle, L. S.; Shailaja,
J.; Uppili, S.; Joy, A.; Ramamurthy, V. Acc. Chem. Res. 2003, 36, 509. (g)
Sivaguru, J.; Poon, T.; Franz, R.; Jockusch, S.; Adam, W.; Turro, N. J. J.
Am. Chem. Soc. 2004, 126, 10816. (h) Sivaguru, J.; Saito, H.; Solomon,
M. R.; Kaanumalle, L. S.; Roon, T.; Franz, R.; Jockusch, S.; Adam, W.;
Ramamurthy, V.; Inoue, Y.; Turro, N. J. Photochem. Photobiol. Sci. 2006,
82, 123. (i) Sivasubramanian, K.; Kaanumalle, L. S.; Uppili, S.;
Ramamurthy, V. Org. Biomol. Chem. 2007, 5, 1569.
(15) (a) Grosch, B.; Orlebar, C. N.; Herdtweck, E.; Massa, W.; Bach, T.
Angew. Chem., Int. Ed. 2003, 42, 3693. (b) Grosch, B.; Orlebar, C. N.;
Herdtweck, E.; Kaneda, M.; Wada, T.; Inoue, Y.; Bach, T. Chem.-Eur. J.
2004, 10, 2179. (c) Aechtner, T.; Dressel, M.; Bach, T. Angew. Chem., Int. Ed.
2004, 43, 5849. (d) Bauer, A.; Weskamper, F.; Grimme, S.; Bach, T. Nature
2005, 1139. (e) Mizoguchi, J.; Kawanami, Y.; Wada, T.; Kodama, K.; Anzai,
K.; Yanagi, T.; Inoue, Y. Org. Lett. 2006, 8, 6051.
(16) Gao, Y.; Wada, T.; Yang, K.; Kim, K.; Inoue, Y. Chirality 2005, 17,
19.
(17) (a) Jullien, L.; Canceill, J.; Lacombe, L.; Lehn, J.-M. J. Chem. Soc.,
Perkin Trans. 2 1994, 989. (b) Yamada, T.; Fukuhara, G.; Kaneda, T. Chem.
Lett. 2003, 32, 534. (c) Nishiyabu, R.; Kano, K. Eur. J. Org. Chem. 2004,
4985.
ꢀ
Vızvardi, K.; Desmet, K.; Luyten, I.; Sandra, P.; Hoornaert, G.; Eycken,
´
E. V. Org. Lett. 2001, 3, 1173. (e) Koodanjeri, S.; Joy, A.; Ramamurthy, V.
Tetrahedron Lett. 2002, 43, 9229. (f ) Shailaja, J.; Karthikeyan, S.;
Ramamurthy, V. Tetrahedron Lett. 2002, 43, 9335. (g) Nakamura, A.; Inoue,
Y. J. Am. Chem. Soc. 2003, 125, 966. (h) Furutani, A.; Katayama, K.;
Ueshima, Y.; Ogura, M.; Tobe, Y.; Kurosawa, H.; Tsutsumi, K.; Morimoto,
T.; Kakiuchi, K. Chirality 2006, 18, 217.
(12) (a) Inoue, Y.; Dong, F.; Yamamoto, K.; Tong, L.-H.; Tsuneishi, H.;
Hakushi, T.; Tai, A. J. Am. Chem. Soc. 1995, 117, 11033. (b) Inoue, Y.;
Wada, T.; Sugahara, N.; Yamamoto, K.; Kimura, K.; Tong, L.-H.; Gao,
X.-M.; Hou, Z.-J.; Liu, Y. J. Org. Chem. 2000, 65, 8041. (c) Gao, Y.; Inoue,
M.; Wada, T.; Inoue, Y. J. Incl. Phenom. Macrocycl. Chem. 2004, 50, 111. (d)
Ikeda, H.; Nihei, T.; Ueno, A. J. Org. Chem. 2005, 70, 1237. (e) Nakamura,
A.; Inoue, Y. J. Am. Chem. Soc. 2005, 127, 5338. (f ) Yang, C.; Fukuhara, G.;
Nakamura, A.; Origane, Y.; Fujita, K.; Yuan, D.-Q.; Mori, T.; Wada, T.;
Inoue, Y. J. Photochem. Photobiol., A: Chem. 2005, 173, 375. (g) Fukuhara,
G.; Mori, T.; Wada, T.; Inoue, Y. Chem. Commun. 2005, 4199. (h) Yang, C.;
Nakamura, A.; Fukuhara, G.; Origane, Y.; Mori, T.; Wada, T.; Inoue, Y. J.
Org. Chem. 2006, 71, 3126. (i) Fukuhara, G.; Mori, T.; Wada, T.; Inoue, Y.
Chem. Commun. 2006, 1712. ( j) Yang, C.; Nakamura, A.; Wada, T.; Inoue,
Y. Org. Lett. 2006, 8, 3005. (k) Fukuhara, G.; Mori, T.; Wada, T.; Inoue, Y.
J. Org. Chem. 2006, 71, 8233. (l) Yang, C.; Mori, T.; Wada, T.; Inoue, Y. New
J. Chem. 2007, 31, 697. (m) Yang, C.; Nishijima, M.; Nakamura, A.; Mori,
T.; Wada, T.; Inoue, Y. Tetrahedron Lett. 2007, 48, 4357. (n) Lu, R.; Yang,
C.; Cao, Y.; Wang, Z.; Wada, T.; Jiao, W.; Mori, T.; Inoue, Y. Chem.
Commun. 2008, 374. (o) Yang, C.; Mori, T.; Inoue, Y. J. Org. Chem. 2008, 73,
5786. (p) Lu, R.; Yang, C.; Cao, Y.; Tong, L.; Jiao, W.; Wada, T.; Wang, Z.;
Mori, T.; Inoue, Y. J. Org. Chem. 2008, 73, 7695. (q) Qiu, H.; Yang, C.;
Inoue, Y.; Che, S. Org. Lett. 2009, 11, 1793.
J. Org. Chem. Vol. 74, No. 17, 2009 6715