ChemComm
Communication
Zhejiang Province (No. LY14B020011), and Faculty of Chemistry &
Material Engineering, Wenzhou University for their financial
support.
Table 2 (continued)
Notes and references
Entry Ar–I
Amines
Products
Yieldb (%)
1 (a) R. C. Larock, Comprehensive Organic Transformations, Wiley-VCH,
New York, 2nd edn, 1999; (b) Y. H. Chen, Y. H. Zhang, H. J. Zhang,
D. Z. Liu, M. Gu, J. Y. Li, F. Wu, X. Z. Zhu, J. Li and F. J. Nan, J. Med. Chem.,
2006, 49, 1613; (c) A. Natarajan, K. Wang, V. Ramamurthy, J. Scheffer and
B. Patrick, Org. Lett., 2002, 4, 1443; (d) D. H. Slee, K. L. Laslo, J. H. Elder,
I. R. Ollmann, A. Gustchina, J. Kervinen, A. Zdanov, A. Wlodawer and
C. H. Wong, J. Am. Chem. Soc., 1995, 117, 11867; (e) B. Hagihara and S. L.
Schreiber, J. Am. Chem. Soc., 1992, 114, 6570.
2 (a) A. Greenberg, C. M. Breneman and J. F. Liebman, The Amide Linkage:
Selected Structural Aspects in Chemistry., Biochemistry., and Materials
Science, Wiley-Interscience, New York, 2000; (b) J. P. Shackleford,
B. Shen and J. N. Johnston, Science, 2011, 109, 44; (c) J. Li, F. Xu,
Y. Zhang and Q. Shen, J. Org. Chem., 2009, 74, 2575; (d) H. U. Vora and
T. Rovis, J. Am. Chem. Soc., 2007, 129, 13796; (e) C. Gunanathan,
Y. Ben-David and D. Milstein, Science, 2007, 317, 790.
16
1a
61, 3r
17
1a
1a
76, 3s
25, 3t
18d
19
3 For reviews, see: (a) M. B. Smith, Compendium of Organic Synthetic
Methods, Wiley, New York, 2001, vol. 9, pp. 100–116; (b) M. A. Foley
and T. F. Jamison, Org. Process Res. Dev., 2010, 14, 1177.
1a
1a
BuNH2 2k
Bu2NH 2l
62, 3u
95, 3a
4 (a) A. Schoenberg, I. Bartoletti and R. F. Heck, J. Org. Chem., 1974,
39, 3318; (b) A. Schoenberg and R. F. Heck, J. Org. Chem., 1974, 39, 3327.
5 For reviews, see: (a) Handbook of Organopalladium Chemistry for Organic
Synthesis, ed. E. Negishi, Wiley-Interscience, New York, 2002; (b) J. Tsuji,
Palladium Reagents and Catalysts, Wiley, New York, 1995; (c) M. A. P.
Martins, C. P. Frizzo, D. N. Moreira, L. Buriol and P. Machado, Chem. Rev.,
2009, 109, 4140; (d) T. Morimsoto and K. Kakiuchi, Angew. Chem., Int. Ed.,
2004, 43, 5580; (e) F. Ozawa, H. Soyama, H. Yanagihara, I. Aoyama,
H. Takino, K. Izawa, T. Yamamoto and A. Yamamoto, J. Am. Chem. Soc.,
1985, 107, 3235; ( f ) A. Brennfu¨hrer, H. Neumann and M. Beller, Angew.
Chem., Int. Ed., 2009, 48, 4114; (g) F. Ozawa, H. Soyama, T. Yamamoto and
20
a
Reaction conditions: Pd(PhCN)2Cl2 (5 mol%), CuO (3 equiv.), and
PhCN (2 mL) at 100 1C under a CO atmosphere (1 atm, 25 mL) for 16 h.
b
c
d
e
Isolated yields. 30 h. 24 h. Another carbonylation product N,N-
diisopropyl-4-methoxybenzamide (3q) was isolated in 7% yield.
¨
A. Yamamoto, Tetrahedron, 1982, 23, 3383; (h) R. Skoda-Foldes and
´
L. Kollar, Curr. Org. Chem., 2002, 6, 1097; (i) Q. Liu, H. Zhang and A.-W.
Lei, Angew. Chem., Int. Ed., 2011, 50, 10788; ( j) Y. H. Hu, J. Liu, Z. X. Lv,
X. C. Luo, H. Zhang, Y. Lan and A.-W. Lei, J. Am. Chem. Soc., 2010,
132, 3153; (k) H. Zhang, R. Y. Shi, P. Gan, C. Liu, A. X. Ding, Q. Y. Wang and
A.-W. Lei, Angew. Chem., Int. Ed., 2012, 51, 5204; (l) W. Li, C. Liu, H. Zhang,
K. Y. Ye, G. H. Zhang, W. Z. Zhang, Z. L. Duan, S.-L. You and A.-W. Lei,
Angew. Chem., Int. Ed., 2014, 53, 2443; (m) L. Wang, Y. X. Wang, C. Liu and
A.-W. Lei, Angew. Chem., Int. Ed., 2014, 53, 5657.
6 For recent paper on palladium-catalyzed C–N bond activation, see:
(a) Y. S. Bao, B. Zhaorigetu, B. Agula, M. Baiyin and M. L. Jia, J. Org.
Chem., 2014, 79, 803; (b) T. N. Uehara, J. Yamaguchi and K. Itami,
Asian J. Org. Chem., 2013, 2, 938; (c) Y.-J. Xie, J.-H. Hu, Y.-Y. Wang,
C.-G. Xia and H.-M. Huang, J. Am. Chem. Soc., 2012, 134, 20613;
(d) M.-B. Li, Y. Wang and S.-K. Tian, Angew. Chem., Int. Ed., 2012,
51, 2968; (e) Y. Liu, B. Yao, C.-L. Deng, R.-Y. Tang, X.-G. Zhang and
J.-H. Li, Org. Lett., 2011, 13, 2184; ( f ) X.-H. Zhao, D.-L. Liu, H. Guo,
Y.-G. Liu and W.-B. Zhang, J. Am. Chem. Soc., 2011, 133, 19354.
7 For recent paper on other metal-catalyzed C–N bond activation, see
(a) X. B. Zhang, W. C. Yang and L. Wang, Org. Biomol. Chem., 2013,
11, 3649; (b) Z. Ling, L. Yun, L.-H. Liu, B. Wu and X.-F. Fu, Chem. Commun.,
2013, 49, 4214; (c) Y.-J. Xie, B. Qian, P. Xie and H.-M. Huang, Adv. Synth.
Catal., 2013, 355, 1315; (d) Y.-P. Zhou, Y.-J. Xie, L. Yang, P. Xie and H.-M.
Huang, Tetrahedron Lett., 2013, 54, 2713; (e) S.-M. Guo, B. Qian, Y.-J. Xie,
C.-G. Xia and H.-M. Huang, Org. Lett., 2011, 13, 522; ( f ) C.-F. Yang,
J.-Y. Wang and S.-K. Tian, Chem. Commun., 2011, 47, 8343; (g) J.-Y. Luo,
M.-Y. Wu, F.-H. Xiao and G.-J. Deng, Tetrahedron Lett., 2011, 52, 2706;
(h) Y. Kuninobu, M. Nishi and K. Takai, Chem. Commun., 2010, 46, 8860.
8 (a) R.-Y. Shi, L.-J. Lu, H. Zhang, B.-R. Chen, Y.-C. Sha, C. Liu and
A.-W. Lei, Angew. Chem., Int. Ed., 2013, 52, 10582; (b) T. Kobayashi
and M. Tanaka, J. Org. Chem., 1982, 231, C12.
Scheme 2 Proposed mechanism for the reaction.
In summary, a protocol for the preparation of amides via the
palladium-catalyzed carbonylation of aryl iodides and tertiary
amines has been described. Pd(PhCN)2Cl2, CuO, CO and benzo-
nitrile were found to be the optimum conditions for this
reaction and a number of aryl iodides and tertiary amines are
tolerated to furnish amides in moderate to excellent yields.
Importantly, the protocol uses commercially available tertiary
amines as the coupling partner. Work to extend the scope and
application of this reaction is currently underway.
9 (a) J. S. Quesnel and B. A. Arndtsen, J. Am. Chem. Soc., 2013, 135, 16841;
(b) J. H. Li, Y. X. Xie and D. L. Yin, J. Org. Chem., 2003, 68, 9367;
(c) S. Tang, Q. F. Yu, P. Peng, J. H. Li, P. Zhong and R. Y. Tang, Org. Lett.,
2007, 9, 3413; (d) J. H. Li, S. Tang and Y. X. Xie, J. Org. Chem., 2005,
70, 477; (e) Y. M. Shen, Z. Tan, D. Chen, X. B. Feng, M. Li, C.-C. Guo and
C. L. Zhu, Tetrahedron, 2009, 65, 158; ( f ) Y. M. Shen, M. Li, S. Z. Wang,
T. G. Zhan, Z. Tan and C.-C. Guo, Chem. Commun., 2009, 953.
We thank the National Natural Science Foundation of China
(No. 21102104 and 21272177), the Natural Science Foundation of
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 14775--14777 | 14777