Organic Process Research & Development
Communication
Metal-Catalyzed C−H Activation: Examples and Concepts. Chem.
removed in vacuo, and the remaining residue was purified by
flash column chromatography on silica gel to afford the
corresponding coumarin.
Soc. Rev. 2016, 45, 2900−2936. (i) Gulías, M.; Mascarenas, J. L.
̃
Metal-Catalyzed Annulations through Activation and Cleavage of C−
H Bonds. Angew. Chem., Int. Ed. 2016, 55, 11000−11019.
̈
(j) Sambiagio, C.; Schonbauer, D.; Blieck, R.; Dao-Huy, T.;
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-
S
Delord, J.; Besset, T.; Maes, B. U. W.; Schnurch, M. A
̈
Comprehensive Overview of Directing Groups Applied in Metal-
Catalysed C−H Functionalisation Chemistry. Chem. Soc. Rev. 2018,
47, 6603−6743.
Detailed experimental procedures, characterization data,
(5) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas,
A. W.; Wilson, D. M.; Wood, A. To Transform Drug Discovery. Nat.
Chem. 2018, 10, 383−394.
AUTHOR INFORMATION
Corresponding Authors
(6) (a) Vidal, X.; Mascarenas, J. L.; Gulías, M. Palladium-Catalyzed,
̃
■
Enantioselective Formal Cycloaddition between Benzyltriflamides and
Allenes: Straightforward Access to Enantioenriched Isoquinolines. J.
́
Am. Chem. Soc. 2019, 141, 1862−1866. (b) Font, M.; Cendon, B.;
ORCID
Seoane, A.; Mascarenas, J. L.; Gulías, M. Rhodium(III)-Catalyzed
̃
Annulation of 2-Alkenylanilides with Alkynes via C−H Activation: a
Direct Access to 2-Substituted Indolines. Angew. Chem., Int. Ed. 2018,
́
́
57, 8255−8259. (c) Cendon, B.; Casanova, N.; Comanescu, C.;
́
̃
̃
Jose L. Mascaren
̃
García-Fandino, R.; Seoane, A.; Gulías, M.; Mascarenas, J. L.
Palladium-Catalyzed Formal (5 + 2) Annulation between ortho-
Alkenylanilides and Allenes. Org. Lett. 2017, 19, 1674−1677.
̃ ̃
(d) Casanova, N.; Del Rio, K. P.; García-Fandino, R.; Mascarenas,
Notes
The authors declare no competing financial interest.
J. L.; Gulías, M. Palladium(II)-Catalyzed Annulation between ortho-
Alkenylphenols and Allenes. Key Role of the Metal Geometry in
Determining the Reaction Outcome. ACS Catal. 2016, 6, 3349−3353.
ACKNOWLEDGMENTS
This work received financial support from Spanish grants
(SAF2016-76689-R, CTQ2016-77047-P, and Juan de la
■
(e) Casanova, N.; Seoane, A.; Mascarenas, J. L.; Gulías, M. Rhodium-
̃
Catalyzed (5 + 1) Annulation between 2-Alkenylphenols and Allenes:
A Practical Entry to 2,2-disubstituted 2H-Chromenes. Angew. Chem.,
Int. Ed. 2015, 54, 2374−2377. (f) Seoane, A.; Casanova, N.;
́
Cierva-Incorporacion Fellowship IJCI-2017-31450 to M.F.),
́
́
́
the Conselleria de Cultura, Educacion e Ordenacion
Universitaria (ED431C 2017/19, 2015-CP082, and Centro
Quinones, N.; Mascarenas, J. L.; Gulías, M. Rhodium(III)-Catalyzed
̃ ̃
Dearomatizing (3 + 2) Annulation of 2-Alkenylphenols and Alkynes.
́
Singular de Investigacion de Galicia Accreditation 2016−2019,
J. Am. Chem. Soc. 2014, 136, 7607−7610. (g) Seoane, A.; Casanova,
ED431G/09), the European Regional Development Fund
(ERDF), and the European Research Council (Advanced
Grant 340055). The orfeo-cinqa network (CTQ2016-81797-
REDC) is also kindly acknowledged.
N.; Quinones, N.; Mascarenas, J. L.; Gulías, M. Straightforward
̃ ̃
Assembly of Benzoxepines by Means of a Rhodium(III)-Catalyzed
C−H Functionalization of o-Vinylphenols. J. Am. Chem. Soc. 2014,
136, 834−837. (h) Quinones, N.; Seoane, A.; García-Fandino, R.;
̃ ̃
Mascarenas, J. L.; Gulías, M. Rhodium(III)-Catalyzed Intramolecular
̃
REFERENCES
Annulations Involving Amide-Directed C−H Activations: Synthetic
Scope and Mechanistic Studies. Chem. Sci. 2013, 4, 2874−2879.
(7) After the publication of our rhodium-catalyzed (5 + 1)
annulation of 2-alkenylphenols and CO for the preparation of
coumarins, a similar method catalyzed by cobalt was reported. See:
Liu, X.-G.; Zhang, S.-S.; Jiang, C.-Y.; Wu, J.-Q.; Li, Q.; Wang, H.
Cp*Co(III)-Catalyzed Annulations of 2-Alkenylphenols with CO:
Mild Access to Coumarin Derivatives. Org. Lett. 2015, 17, 5404−
5407.
■
(1) Lautens, M.; Klute, W.; Tam, W. Transition Metal-Mediated
Cycloaddition Reactions. Chem. Rev. 1996, 96, 49−92.
(2) Lee, Y.-C.; Kumar, K.; Waldmann, H. Ligand-Directed Divergent
Synthesis of Carbo- and Heterocyclic Ring Systems. Angew. Chem.,
Int. Ed. 2018, 57, 5212−5226.
(3) Synthesis of Heterocycles via Cycloadditions; Hassner, A., Ed.;
Springer: Berlin, 2008.
(4) For selected recent reviews of metal-catalyzed C−H function-
alizations, including C−H cycloadditions, see: (a) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C−C Bond
Formation via Heteroatom-Directed C−H Bond Activation. Chem.
Rev. 2010, 110, 624−655. (b) Lyons, T. W.; Sanford, M. S. Palladium-
Catalyzed Ligand-Directed C−H Functionalization Reactions. Chem.
Rev. 2010, 110, 1147−1169. (c) Yeung, C. S.; Dong, V. M. Catalytic
Dehydrogenative Cross-Coupling: Forming Carbon−Carbon Bonds
by Oxidizing Two Carbon−Hydrogen Bonds. Chem. Rev. 2011, 111,
1215−1292. (d) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak
Coordination as a Powerful Means for Developing Broadly Useful C−
H Functionalization Reactions. Acc. Chem. Res. 2012, 45, 788−802.
(e) Chen, D. Y.-K.; Youn, S. W. C−H Activation: a Complementary
Tool in the Total Synthesis of Complex Natural Products. Chem. -
Eur. J. 2012, 18, 9452−9474. (f) Wencel-Delord, J.; Glorius, F. C−H
Bond Activation Enables the Rapid Construction and Late-Stage
Diversification of Functional Molecules. Nat. Chem. 2013, 5, 369−
375. (g) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y.
Transition Metal-Catalyzed C−H Bond Functionalization by the Use
of Diverse Directing Groups. Org. Chem. Front. 2015, 2, 1107−1295.
(h) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord. Mild
(8) Hoerr, R.; Noeldner, M. Ensaculin (KA-672·HCl): A Multi-
transmitter Approach to Dementia Treatment. CNS Drug Rev. 2002,
8, 143−158.
(9) Sprogøe, K.; Manniche, S.; Larsen, T. O.; Christophersen, C.
Janoxepin and Brevicompanine B: Antiplasmodial Metabolites from
the Fungus Aspergillus Janus. Tetrahedron 2005, 61, 8718−8721.
(10) Narita, K.; Nakamura, K.; Abe, Y.; Katoh, T. Total Synthesis of
Bauhinoxepin J: A Biologically Active Dibenzo[b,f ]oxepin Isolated
from Bauhinia Purpurea. Eur. J. Inorg. Chem. 2011, 2011, 4985−4988.
(11) Li, H.; Yao, Y.; Li, L. Coumarins as Potential Antidiabetic
Agents. J. Pharm. Pharmacol. 2017, 69, 1253−1264.
́
́
(12) Vidal, C.; Tomas-Gamasa, M.; Destito, P.; Lopez, F.;
Mascarenas, J. L. Concurrent and Orthogonal gold(I) and ruthenium-
̃
(II) Catalysis inside Living Cells. Nat. Commun. 2018, 9, 1913.
(13) Yamaguchi, Y.; Nishizono, N.; Kobayashi, D.; Yoshimura, T.;
Wada, K.; Oda, K. Evaluation of Synthesized Coumarin Derivatives
on Aromatase Inhibitory Activity. Bioorg. Med. Chem. Lett. 2017, 27,
2645−2649.
(14) Zhang, Z.-R.; Leung, W. N.; Cheung, H. Y.; Chan, C. W.
Osthole: A Review on Its Bioactivities, Pharmacological Properties,
D
Org. Process Res. Dev. XXXX, XXX, XXX−XXX