Page 5 of 6
Journal of the American Chemical Society
(3) a) Ferrier, R. J.; Hay, R. W.; Vethaviyasar, N. Potentially Versatile
H.; Hung, S.-C. "One-Pot" Protection, Glycosylation, and Protection-
Glycosylation Strategies of Carbohydrates. Chem. Rev. 2018, 118,
8025−8104. c) Huang, X. F.; Yoshida, K.; Yang, B. Strategies for One-Pot
Synthesis of Oligosaccharides, in Glycochemical Synthesis: Strategies and
Applications. Eds: Huang, S.-H.; Zulueta, M. N. L. Wiley-VCH: Weinheim,
2017; pp 155−187. d) Wang, Y.; Ye, X.-S.; Zhang, L.-H. Oligosaccharide
Assembly by One-Pot Multi-step Strategy. Org. Biomol. Chem. 2007, 5,
2189−2200. e) Yu, B.; Yang, Z.; Cao, H. One-Pot Glycosylation (OPG) for
the Chemical Synthesis of Oligosaccharides. Curr. Org. Chem. 2005, 9,
179−194. f) Codée, J. D. C.; Lithens, R. E. J. N.; van der Bos, L. J.;
Overkleeft, H. S.; van der Marel, G. A. Thioglycosides in Sequential
Glycosylation Strategies. Chem. Soc. Rev. 2005, 34, 769−782.
Synthesis of Glycosides. Carbohydr. Res. 1973, 27, 55−61. b) Konradsson,
P.; Udodong, U. E.; Fraser-Reid, B. Iodonium Promoted Reactions of
Disarmed Thioglycosides. Tetrahedron Lett. 1990, 31, 4313–4316. c)
Veeneman, G. H.; van Leeuwen, S. H.; van Boom, J. H. Iodonium Ion
Promoted Reactions at the Anomeric Centre. II An Efficient Thioglycoside
Mediated Approach toward the Formation of 1,2-Trans Linked Glycosides
and Glycosidic Esters. Tetrahedron Lett. 1990, 31, 1331–1334. for reviews,
see: d) Zhong, W.; Boons, G.-J. Glycoside Synthesis from 1-
Sulfur/Selenium-Substituted Derivatives. In Handbook of Chemical
Glycosylation; Demchenko, A. V., Ed.; Wiley-VCH: Weinheim, Germany,
2008; pp 261-303. e) Lian, G.; Zhang, X.; Yu, B. Thioglycosides in
Carbohydrate Research. Carbohydr. Res. 2015, 403, 13−22.
1
2
3
4
5
6
7
8
9
(7) Orthogonal one-pot: a) Yamada, H.; Harada, T.; Miyazaki, H.;
Takahashi, T., One-Pot Sequential Glycosylation: A New Method for the
Synthesis of Oligosaccharides. Tetrahedron Lett. 1994, 35, 3979−3982. b)
Yamada, H.; Harada, T.; Takahashi, T. Synthesis of An Elicitor-Active
Hexaglucoside Analog by a One-Pot, Two-Step Glycosidation Procedure. J.
Am. Chem. Soc. 1994, 116, 7919−7920. c) Codée, J. D. C.; van den Bos, L.
J.; Litjens, R. E. J. N.; Overkleeft, H. S.; van Boom, J. H.; van der Marel, G.
A. Sequential One-Pot Glycosylations Using 1-Hydroxyl and 1-Thiodonors.
Org. Lett. 2003, 5, 1947−1950. d) Kaeothip, S.; Demchenko, A. V.,
Expeditious Oligosaccharide Synthesis via Selective, Semi-Orthogonal, and
Orthogonal Activation. Carbohydr. Res. 2011, 346, 1371−1388. e) Zhang,
Y.; Xiang, G.; He, S. Hu, Y.; Liu, Y.; Xu, L.; Xiao, G. Orthogonal One-Pot
Synthesis of Oligosaccharides Based on Glycosyl ortho-Alkynylbenzoates.
Org. Lett. 2019, 21, 2335−2339. f) Dey, S.; Lo, H.-J.; Wong, C.-H. An
Efficient Modular One-Pot Synthesis of Heparin-Based Anticoagulant
Idraparinux. J. Am. Chem. Soc. 2019, 141, 10309−10314. Reactivity-based
one-pot: g) Ley, S. V.; Priepke, H. W. M. A Facile One-Pot Synthesis of a
Trisaccharide Unit from the Common Polysaccharide Antigen of Group B
Streptococci Using Cyclohexane-1, 2-diacetal (CDA) Protected
Rhamnosides. Angew. Chem. Int. Ed. 1994, 33, 2292−2294. h) Zhang, Z.;
Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H.
Programmable One-Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999,
121, 734−753. i) Wu, C.-Y.; Wong, C.-H. Programmable One-pot
Glycosylation. Top Curr. Chem. 2011, 301, 223−252. j) Cheng, C.-W.; Zhou,
Y.; Pan, W.-H.; Dey, S.; Wu, C.-Y.; Hsu, W.-L.; Wong, C.-H., Hierarchical
and Programmable One-Pot Synthesis of Oligosaccharides. Nature
Commun. 2018, 9, 5202. k) Cheng, C.-W.; Wu, C.-Y.; Hsu, W.-L.; Wong,
C.-H.; Programmable One-Pot Synthesis of Oligosaccharides. Biochem. doi:
10.1021/acs.biochem.9b00613. Preactivation-based one-pot: l) Huang, X.;
Huang, L.; Wang, H.; Ye, X.-S. Iterative One-Pot Synthesis of
Oligosaccharides. Angew. Chem., Int. Ed. 2004, 43, 5221−5224. m) Yang, W.;
Yang, B.; Ramadan, S.; Huang, X. Preactivation-Based Chemoselective
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) a) Dasgupta, F.; Garegg, P. J. Alkyl Sulfenyl Triflate as Activator in the
Thioglycoside-Mediated Formation of β-Glycosidic Linkages During
Oligosaccharide Synthesis. Carbohydr. Res. 1988, 177, C13–C17. b)
Dasgupta, F.; Garegg, P. J. Use of the Methyl Sulfenyl Cation as an Activator
for Glycosylation Reactions with Alkyl (Aryl) 1-Thioglycopyranosides:
Synthesis of Methyl O-(2-Acetamido-2-Deoxy-β-D-Glucopyranosyl)-(1→
6)-O-α-D-Glucopyranosyl-(1 → 2)-α-D-Glucopyranoside, A Derivative of
the Core Trisaccharide of E. coli K12. Carbohydr. Res. 1990, 202, 225–238.
c) Martichonok, V.; Whitesides, G. M. A Practical Method for the Synthesis
of Sialyl α-Glycosides. J. Am. Chem. Soc. 1996, 118, 8187–8191. d) Crich,
D.; Sun, S. Direct Formation of β-Mannopyranosides and Other Hindered
Glycosides from Thioglycosides. J. Am. Chem. Soc. 1998, 120, 435–436. e)
Crich, D.; Sun, S. Are Glycosyl Triflates Intermediates in the Sulfoxide
Glycosylation Method?
A
Chemical and 1H, 13C, and 19F NMR
Spectroscopic Investigation. J. Am. Chem. Soc. 1997, 119, 11217–11233. f)
Cai, F.; Yang, F. Sulfenyl Triflates as Glycosylation Promoters: Applications
in Synthesis and Mechanistic Studies. J. Carbohydr. Chem. 2014, 33, 1–19.
Selected references for the reactions with in situ generated thiophilic
intermediates: g) Crich, D.; Smith, M. 1-Benzenesulfinyl
Piperidine/Trifluoromethanesulfonic Anhydride: A Potent Combination
of Shelf-Stable Reagents for the Low-Temperature Conversion of
Thioglycosides to Glycosyl Triflates and for the Formation of Diverse
Glycosidic Linkages. J. Am. Chem. Soc. 2001, 123, 9015−9020. h) Mong, T.
K.-K.; Lee, H.-K.; Durón, S. G.; Wong, C.-H., Reactivity-Based One-Pot
Total Synthesis of Fucose GM1 Oligosaccharide: A Sialylated Antigenic
Epitope of Small-cell Lung Cancer. Proc. Natl. Acad. Sci. 2003, 100,
797−802. i) Amaya, T.; Takahashi, D.; Tanaka, H.; Takahashi, T. Synthesis
of 2,3,6-Trideoxysugar-Containing Disaccharides by Cyclization and
Glycosidation Through the Sequential Activation of Sulfoxide and
Methylsulfanyl Groups in a One-Pot Procedure. Angew. Chem., Int. Ed. 2003,
42, 1833−1836. j) Codée, J. D. C.; Lithens, R. E. J. N.; den Heeten, R.;
Overkleeft, H. S.; van Boom, J. H.; van der Marel, G. A. Ph2SO/Tf2O:ꢀ A
Powerful Promotor System in Chemoselective Glycosylations Using
Thioglycosides. Org. Lett. 2003, 5, 1519−1522. k) Codée, J. D. C.; van den
Bos, L. J.; Litjens, R. E. J. N.; Overkleeft, H. S.; van Boeckel, C. A. A.; van
Boom, J. H.; van der Marel, G. A. Chemoselective Glycosylations Using
Sulfonium Triflate Activator Systems. Tetrahedron 2004, 60, 1057−1064. l)
Wang, Y.; Huang, X.; Zhang, L.-H.; Ye, X.-S. A Four-Component One-Pot
Synthesis of -Gal Pentasaccharide. Org. Lett. 2004, 6, 4415−4417.
Glycosylations:
A Powerful Strategy for Oligosaccharide Assembly.
Beilstein J. Org. Chem. 2017, 13, 2094−2114. n) Wu, Y.; Xiong, D.-C.; Chen,
S.-C.; Wang, Y.-S.; Ye, X.-S. Total Synthesis of Mycobacterial
Arabinogalactan Containing 92 monosaccharide units. Nat. Commun. 2017,
8, 14851.
(8) a) Kuhn, R.; Baschang-Bister, W.; Dafeldecker, W. Über S-Oxyde der
Zuckermercaptale und Eine Neue Glykosidsynthese. Justus Liebigs Ann.
Chem. 1961, 641, 160–176; b) Kuhn, R.; Neugebauer, F. A. S-Oxyde und S-
Dioxyde cyclischer Mercaptole. Chem. Ber. 1961, 94, 2629–2644. c) Cai, L.;
Zeng, J.; Li, T.; Xiao, Y.; Ma, X.; Xiao, X.; Zhang, Q.; Meng, L.; Wan, Q.
Dehydrative Glycosylation Enabled by a Comproportionation Reaction of
2-Aryl-1,3-dithiane 1-Oxide. Chin. J. Chem. 2020, 38, 43−49.
(9) a) Shu, P.; Xiao, X.; Zhao, Y.; Xu, Y.; Yao, W.; Tao, J.; Wang, H.; Yao,
G.; Lu, Z.; Zeng, J.; Wan, Q. Interrupted Pummerer Reaction in Latent-
Active Glycosylation: Glycosyl Donors with a Recyclable and Regenerative
Leaving Group. Angew. Chem. Int. Ed. 2015, 54, 14432−14436; b) Xiao, X.;
Zhao, Y.; Shu, P.; Liu, Y.; Sun, J.; Zhao, X.; Zhang, Q.; Zeng, J.; Wan, Q.
Remote Activation of Disarmed Thioglycosides in Latent-Active
Glycosylation via Interrupted Pummerer Reaction. J. Am. Chem. Soc. 2016,
138, 13402−13407. c) Chen, W.; Zeng, J.; Liao, Z.; Teng, S.; Xiao, X.; Meng,
L.; Wan, Q. Mechanism investigations of the activation process of S-2-
[(propan-2-yl)sulfinyl]benzyl (SPSB) glycosides. J. Carbohydr. Chem. 2018,
37, 498−506. d) Meng, L.; Zeng, J.; Wan, Q. Interrupted Pummerer
Reaction in Latent/Active Glycosylation. Synlett, 2018, 29, 148−156. e)
Zhao, Y.; Zeng, J.; Liu, Y.; Xiao, X.; Sun, G.; Sun, J.; Shu, P.; Du, D.; Meng,
L.; Wan, Q. Collective Synthesis of Phenylethanoid Glycosides by
Interrupted Pummerer Reaction Mediated Glycosylations. J. Carbohydr.
Chem. 2018, 37, 471−497. f) Fang, J.; Zeng, J., Sun, J.; Zhang, S., Xiao, X.;
(5) a) Gildersleeve, J.; Smith, A.; Sakurai, K.; Raghavan, S.; Kahne, D.
Scavenging Byproducts in the Sulfoxide Glycosylation Reaction: ꢀ
Application to the Synthesis of Ciclamycin 0. J. Am. Chem. Soc. 1999, 121,
6176−6182. Other Scavengers used in the activation of glycosyl sulfoxides:
b) Raghavan, S.; Kahne, D., A one step synthesis of the ciclamycin
trisaccharide. J. Am. Chem. Soc 1993, 115, 1580−1581. c) Sliedregt, L. A. J.
M.; van der Marel, G. A.; van Boom, J. H. Trimethylsilyl Triflate Mediated
Chemoselective Condensation of Aryl Sulfenyl Glycosides. Tetrahedron
Lett. 1994, 35, 4015−4018. d) Alonso, I.; Khiar, N.; Martin-Lomas, M. A
New Promoter System for the Sulfoxide Glycosylation Reaction.
Tetrahedron Lett. 1996, 37, 1477−1480. e) Nagai, H.; Matsumura, S.;
Toshima, K., A Novel Promoter, Heteropoly Acid, Mediated Chemo- and
Stereoselective Sulfoxide Glycosidation Reactions. Tetrahedron Lett. 2000,
41, 10233−10237.
(6) For reviews on one-pot sequential glycosylation, see: a) Pal, R.;
Anupama, D.; Narayanaswamy, J. One-pot Oligosaccharide Synthesis:
Latent-Active Method of Glycosylations and Radical Halogenation
Activation of Allyl Glycosides. Pure App. Chem. 2019, 91, 1451−1470. b)
Kulkarni, S. S.; Wang, C.-C.; Sabbavarapu, N. M.; Podilapu, A. R.; Liao, P.-
ACS Paragon Plus Environment