EIS measurements were carried out at a potential of 1.57 V (vs RHE)
in the frequency range from 100 kHz to 0.1 Hz in 1.0 m KOH solution.
ECSA was estimated from the electrochemical double-layer capacitance
(Cdl) of the materials. The Cdl was determined by a simple CV method.
The CV was conducted in a potential window of −0.1 to 0 V (vs Hg/
HgO reference electrode) at various scan rate of 10, 20, 40, 60, 80, and
100 mV s−1. Then by plotting capacitive current difference Δj = ja − jc
at −0.05 V against scan rates, an obtained linear slope is equivalent to
S. Li, Q. Yan, Nano Energy 2018, 47, 257; c) Q. Liang, L. Zhong,
C. Du, Y. Luo, J. Zhao, Y. Zheng, J. Xu, J. Ma, C. Liu, S. Li, Q. Yan,
ACS Nano 2019, 13, 7975.
[7] a) Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015,
44, 2060; b) P. F. Liu, X. Li, S. Yang, M. Y. Zu, P. Liu, B. Zhang,
L. R. Zheng, H. Zhao, H. G. Yang, ACS Energy Lett. 2017, 2, 2257;
c) Y. Jiang, Y.-P. Deng, R. Liang, J. Fu, D. Luo, G. Liu, J. Li, Z. Zhang,
Y. Hu, Z. Chen, Adv. Energy Mater. 2019, 9, 1900911.
[8] a) K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong,
H. L. Jang, S. Park, D. Kim, N.-E. Sung, S. H. Kim, S. Han,
K. T. Nam, J. Am. Chem. Soc. 2014, 136, 7435; b) Y. Li, C. Zhao,
Chem. Mater. 2016, 28, 5659; c) Y. Zhan, M. Lu, S. Yang, C. Xu,
Z. Liu, J. Y. Lee, ChemCatChem 2016, 8, 372; d) H. Kim, J. Park,
I. Park, K. Jin, S. E. Jerng, S. H. Kim, K. T. Nam, K. Kang, Nat.
Commun. 2015, 6, 8253.
twice of the double-layer capacitance (Cdl) value. ECSAs were obtained
−2
from Cdl values divided by 40 µF cm−2 cmECSA
.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
[9] a) M. Pramanik, C. Li, M. Imura, V. Malgras, Y.-M. Kang,
Y. Yamauchi, Small 2016, 12, 1709; b) Y. Zhou, H. C. Zeng, Small
2018, 14, 1704403.
Acknowledgements
This study was financially supported by Singapore MOE AcRF Tier 1 Grant
2016-T1-002-065, and Tier 2 under Grant Nos. 2017-T2-2-069 and 2018-T2-
01-010. The authors greatly thank the Facility for Analysis, Characterization,
Testing and Simulation (FACTS) of Nanyang Technological University,
Singapore, for using their TEM, SEM, and XRD equipment.
[10] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov,
T. F. Jaramillo, Science 2017, 355, eaad4998.
[11] a) D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai,
A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori,
R. C. Davis, J. R. Bargar, J. K. Nørskov, A. Nilsson, A. T. Bell, J. Am.
Chem. Soc. 2015, 137, 1305; b) T. Wu, S. Sun, J. Song, S. Xi, Y. Du,
B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng,
H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763.
[12] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao,
S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117,
6225.
Conflict of Interest
The authors declare no conflict of interest.
Keywords
[13] L. Su, H. Du, C. Tang, K. Nan, J. Wu, C. M. Li, J. Colloid Interface Sci.
2018, 528, 36.
amorphous mesoporous, cobalt phosphate, electrocatalysts, nickel
doping, oxygen evolution reaction
[14] Y. Wan, H. Yang, D. Zhao, Acc. Chem. Res. 2006, 39, 423.
[15] a) W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang,
L. Lei, S. Jin, Adv. Funct. Mater. 2017, 27, 1603904; b) M. W. Kanan,
D. G. Nocera, Science 2008, 321, 1072; c) R. D. L. Smith,
M. S. Prévot, R. D. Fagan, S. Trudel, C. P. Berlinguette, J. Am. Chem.
Soc. 2013, 135, 11580.
Received: November 20, 2019
Revised: December 29, 2019
Published online:
[16] D. Yang, Z. Lu, X. Rui, X. Huang, H. Li, J. Zhu, W. Zhang,
Y. M. Lam, H. H. Hng, H. Zhang, Q. Yan, Angew. Chem., Int. Ed.
2014, 53, 9352.
[17] F. B. Noronha, M. Schmal, B. Moraweck, P. Delichère, M. Brun,
F. Villain, R. Fréty, J. Phys. Chem. B 2000, 104, 5478.
[18] a) J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang,
L. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632; b) Y. Zhang,
W. Sun, X. Rui, B. Li, H. T. Tan, G. Guo, S. Madhavi, Y. Zong,
Q. Yan, Small 2015, 11, 3694.
[19] Y. Yin, P. Wu, H. Zhang, C. Cai, Electrochem. Commun. 2012,
18, 1.
[1] a) S. Chu, A. Majumdar, Nature 2012, 488, 294; b) T. R. Cook,
D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets,
D. G. Nocera, Chem. Rev. 2010, 110, 6474; c) J. A. Turner, Science
2004, 305, 972; d) Y.-P. Deng, Y. Jiang, D. Luo, J. Fu, R. Liang,
S. Cheng, Z. Bai, Y. Liu, W. Lei, L. Yang, J. Zhu, Z. Chen, ACS Energy
Lett. 2017, 2, 2706.
[2] a) R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman,
P. Malacrida, I. E. L. Stephens, I. Chorkendorff, ChemElectroChem
2014, 1, 2075; b) Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-
Horn, J. Phys. Chem. Lett. 2012, 3, 399; c) T. Reier, M. Oezaslan,
P. Strasser, ACS Catal. 2012, 2, 1765; d) M. Vukovic´, J. Appl. Electro-
chem. 1987, 17, 737.
[20] P. Zhu, Z. Yang, H. Zhang, J. Yu, Z. Zhang, J. Cai, C. Li, J. Alloys
Compd. 2018, 745, 164.
[3] a) C. G. Read, J. F. Callejas, C. F. Holder, R. E. Schaak, ACS Appl.
Mater. Interfaces 2016, 8, 12798; b) J. Masud, S. Umapathi,
[21] A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, N. S. McIntyre,
Surf. Sci. 2006, 600, 1771.
N. Ashokaan, M. Nath, J. Mater. Chem.
c) N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen,
Chem. Soc. Rev. 2017, 46, 337.
A 2016, 4, 9750;
[22] C. Yan, Y. Zhu, Z. Fang, C. Lv, X. Zhou, G. Chen, G. Yu, Adv. Energy
Mater. 2018, 8, 1800762.
[23] C. S. Lim, C. K. Chua, Z. Sofer, K. Klímová, C. Boothroyd,
M. Pumera, J. Mater. Chem. A 2015, 3, 11920.
[24] a) D. Voiry, M. Chhowalla, Y. Gogotsi, N. A. Kotov, Y. Li,
R. M. Penner, R. E. Schaak, P. S. Weiss, ACS Nano 2018, 12, 9635;
b) C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am.
Chem. Soc. 2013, 135, 16977.
[25] a) M. W. Kanan, J. Yano, Y. Surendranath, M. Dinca˘, V. K. Yachandra,
D. G. Nocera, J. Am. Chem. Soc. 2010, 132, 13692; b) B. S. Yeo,
A. T. Bell, J. Am. Chem. Soc. 2011, 133, 5587.
[4] a) J. Wu, M. Liu, K. Chatterjee, K. P. Hackenberg, J. Shen, X. Zou,
Y. Yan, J. Gu, Y. Yang, J. Lou, P. M. Ajayan, Adv. Mater. Interfaces
2016, 3, 1500669; b) X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, H. Liu,
S. Dou, Small Methods 2017, 1, 1700156.
[5] a) J. Xie, Y. Xie, Chem. - Eur. J. 2016, 22, 3588; b) A. K. Tareen,
G. S. Priyanga, K. Khan, E. Pervaiz, T. Thomas, M. Yang, ChemSu-
sChem 2019, 12, 3941; c) M.-S. Balogun, Y. Huang, W. Qiu, H. Yang,
H. Ji, Y. Tong, Mater. Today 2017, 20, 425.
[6] a) P. Liu, R. N. Ali, J. Li, G. Hu, X. Zhu, Y. Lu, B. Xiang, Appl. Surf.
Sci. 2019, 484, 54; b) Q. Liang, L. Zhong, C. Du, Y. Luo, Y. Zheng,
[26] D. Ge, J. Wu, G. Qu, Y. Deng, H. Geng, J. Zheng, Y. Pan, H. Gu,
Dalton Trans. 2016, 45, 13509.
©
1906766 (7 of 7)
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Small 2020, 1906766