Journal of the American Chemical Society
Communication
K. A. J. Am. Chem. Soc. 2007, 129, 5334. (g) Phillips, E. M.; Reynolds, T.
E.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2416. (h) Nair, V.; Babu,
B. P.; Vellalath, S.; Varghese, V.; Raveendran, A. E.; Suresh, E. Org. Lett.
2009, 11, 2507. (i) Izquierdo, J.; Orue, A.; Scheidt, K. A. J. Am. Chem.
Soc. 2013, 135, 10634.
(4) (a) Nair, V.; Varghese, V.; Babu, B. P.; Sinu, C. R.; Suresh, E. Org.
Biomol. Chem. 2010, 8, 761. (b) Raup, D. E. A.; Cardinal-David, B.;
Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766. (c) Zhao, X. D.;
DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011, 133, 12466.
(5) For NHC-homoenolate annulations of ketones and ketimines, see:
(a) Burstein, C.; Tschan, S.; Xie, X. L.; Glorius, F. Synthesis 2006, 2418.
(b) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E. Org. Lett.
2006, 8, 507. (c) Li, Y.; Zhao, Z. A.; He, H.; You, S. L. Adv. Synth. Catal.
2008, 350, 1885. (d) Rommel, M.; Fukuzumi, T.; Bode, J. W. J. Am.
Chem. Soc. 2008, 130, 17266.
(6) (a) Lv, H.; Tiwari, B.; Mo, J. M.; Xing, C.; Chi, Y. R. Org. Lett. 2012,
14, 5412. (b) Sun, L. H.; Shen, L. T.; Ye, S. Chem. Commun. 2011, 47,
10136.
(7) (a) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53. (b) Dugal-
Tessier, J.; O’Bryan, E. A.; Schroeder, T. B. H.; Cohen, D. T.; Scheidt, K.
A. Angew. Chem., Int. Ed. 2012, 51, 4963. (c) Mo, J. M.; Chen, X. K.; Chi,
Y. R. J. Am. Chem. Soc. 2012, 134, 8810. (d) A recent search (Reaxys) for
the general γ-lactone structure identified >6000 bioactive molecules and
>10 000 isolated natural products.
(8) For selected examples, see: (a) Evans, D. A.; Johnson, J. S. J. Am.
Chem. Soc. 1998, 120, 4895. (b) Evans, D. A.; Scheidt, K. A.; Fandrick, K.
R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (c) Takenaka,
N.; Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 742.
(9) (a) Collinsova, M.; Jiracek, J. Curr. Med. Chem. 2000, 7, 629.
(b) Kafarski, P.; Lejczak, B. Curr. Med. Chem.: Anti-Cancer Agents 2001,
1, 301. (c) Mucha, A.; Kafarski, P.; Berlicki, L. J. Med. Chem. 2011, 54,
5955.
(10) (a) Kolodiazhny, O. I. Tetrahedron: Asymmetry 2005, 16, 3295.
(b) Samanta, S.; Zhao, C. G. J. Am. Chem. Soc. 2006, 128, 7442.
(c) Gondi, V. B.; Hagihara, K.; Rawal, V. H. Angew. Chem., Int. Ed. 2009,
48, 776. (d) Hou, G.; Yu, J.; Yu, C.; Wu, G.; Miao, Z. Adv. Synth. Catal.
2013, 355, 589. (e) Corbett, M. T.; Johnson, J. S. J. Am. Chem. Soc. 2013,
135, 594.
(11) (a) Joly, G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 4102.
(b) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 10521.
(c) Vicario, J.; Ezpeleta, J. M.; Palacios, F. Adv. Synth. Catal. 2012, 354,
2641.
(12) Lee, K.-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
131, 7253.
1,4-carbonyl systems are often prepared through a Stetter
reaction,19,20 but this particular class is difficult to access through
traditional methods due to the diminished reactivity of the ester
and the resulting acidity of the α-aryl ketone product.21 This
NHC-catalyzed annulation provides a potential new strategy for
accessing this challenging 1,4-carbonyl manifold which in theory
can be accessed through a Stetter reaction. However, to our
knowledge, no general, enantioselective intermolecular Stetter
reaction of aromatic aldehydes to α,β-unsaturated esters has been
reported that provides high levels of enantiocontrol at the β-
stereocenter.21
In conclusion, a highly selective NHC-catalyzed formal [3+2]
annulation of α,β-unsaturated aldehydes with acyl phosphonates
has been developed. The ineffectiveness of known NHC catalysts
for this transformation resulted in the creation of new C1-
symmetric biaryl-saturated imidazolium catalysts. Computation-
ally guided rational catalyst design resulted in enhanced
enantioselectivity, allowing for the synthesis of various γ-
butyrolactones with excellent selectivity. These saturated
imidazoliums provide a new catalyst scaffold for investigating
other NHC-catalyzed transformations. In addition, this new
enantioselective platform provides a distinct approach to 1,4-
carbonyl compounds that are difficult to access through
traditional methods, where various substituents can be
incorporated through the appropriate choice of the acyl
phosphonate and aldehyde starting materials. Continuing
investigations involving the use of these chiral saturated
imidazolium catalysts in NHC-catalyzed transformations and
the integration of computational methods to enhance selectivity
via specific catalyst tailoring are ongoing.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral data for new compounds,
geometries, and energies of all structures discussed. This material
AUTHOR INFORMATION
Corresponding Author
■
(13) Harper, K. C.; Sigman, M. S. J. Org. Chem. 2013, 78, 2813.
(14) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109,
3612.
(15) Frisch, M. J.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT,
2009.
(16) The concerted, asynchronous proton transfer was verified with an
intrinsic reaction coordinate calculation.
(17) Johnston, R. C.; Cheong, P. H. Org. Biomol. Chem. 2013, 11, 5057.
(18) Bryan, P.; Pantoliano, M. W.; Quill, S. G.; Hsiao, H. Y.; Poulos, T.
Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 3743.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was generously provided by the NIH (RO1-
GM073072) and Oregon State University (Stone Scholar
Funds). We thank Dr. Paul Siu (Northwestern University) for
assistance with X-ray crystallography.
(19) Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639.
(20) (a) Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. Helv. Chim.
Acta 1996, 79, 1899. (b) de Alaniz, J. R.; Rovis, T. Synlett 2009, 1189.
(21) For recent examples of asymmetric Stetter reactions utilizing
NHC catalysis, see: (a) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011,
REFERENCES
■
(1) For leading reviews, see: (a) Enders, D.; Niemeier, O.; Henseler, A.
Chem. Rev. 2007, 107, 5606. (b) Phillips, E. M.; Chan, A.; Scheidt, K. A.
Aldrichimica Acta 2009, 43, 55. (c) Biju, A. T.; Kuhl, N.; Glorius, F. Acc.
Chem. Res. 2011, 44, 1182. (d) Grossmann, A.; Enders, D. Angew. Chem.,
Int. Ed. 2012, 51, 314. (e) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012,
41, 3511.
́
133, 10402. (b) Sanchez-Larios, E.; Thai, K.; Bilodeau, F.; Gravel, M.
Org. Lett. 2011, 13, 4942. (c) Fang, X. Q.; Chen, X. K.; Lv, H.; Chi, Y. R.
Angew. Chem., Int. Ed. 2011, 50, 11782. (d) DiRocco, D. A.; Noey, E. L.;
Houk, K. N.; Rovis, T. Angew. Chem., Int. Ed. 2012, 51, 2391. (e) For a
recent example of an intermolecular enantioselective Stetter reaction
with a β-alkyl substitution at 59% yield and 90:10 er, see: Wurz, N. E.;
Daniliuc, C. G.; Glorius, F. Chem.Eur. J. 2012, 18, 16297.
(2) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.;
Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336.
(3) (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
(b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (c) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131. (d) Chan, A.;
Scheidt, K. A. Org. Lett. 2005, 7, 905. (e) Nair, V.; Vellalath, S.; Poonoth,
M.; Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736. (f) Chan, A.; Scheidt,
D
dx.doi.org/10.1021/ja410932t | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX