Journal of the American Chemical Society
Communication
similar products (7a−7c). Also of interest, benzonitriles
substituted with sulfones and esters undergo this reaction,
although lower yields were observed (7d−7e).
To gain mechanistic insights of the photochemical/oxidation
Brook rearrangement, we conducted several control experiments.
We first carried out a TEMPO radical quenching experiment with
the (tert-butyldimethylsilyl)phenylmethanol as the substrate; a
42% yield of the TEMPO adduct 9 was isolated, with the yield of
3b decreasing significantly to 16% (Scheme 7, eq 1). Also, control
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS
■
Financial support was provided by the NIH through Grants CA-
19033 and GM-29028. We thank Yusen Qiao for collecting cyclic
voltammetry data. We also thank Prof. Tehshik P. Yoon for
discussions about mechanism.
Scheme 7. Control Experiments
REFERENCES
■
(1) (a) Brook, A. G. Acc. Chem. Res. 1974, 7, 77. (b) Moser, W. H.
Tetrahedron 2001, 57, 2065 and references therein.
(2) (a) Brook, A. G. J. Am. Chem. Soc. 1958, 80, 1886. (b) Brook, A. G.;
Warner, C. M.; McGriskin, M. E. J. Am. Chem. Soc. 1959, 81, 981.
(c) Brook, A. G.; Schwartz, N. V. J. Am. Chem. Soc. 1960, 82, 2435.
(d) Brook, A. G.; Iachia, B. J. Am. Chem. Soc. 1961, 83, 827.
(3) (a) Linderman, R. J.; Ghannam, A. J. Am. Chem. Soc. 1990, 112,
2392. (b) Jankowski, P.; Raubo, P.; Wicha, J. Synlett 1994, 1994, 985.
(c) Fleming, I.; Roberts, R. S.; Smith, S. C. J. Chem. Soc., Perkin Trans. 1
1998, 1215.
(4) (a) Jiang, X.; Bailey, W. F. Organometallics 1995, 14, 5704.
(b) Kawashima, T.;Naganuma, K.;Okazaki, R. Organometallics 1998, 17,
367. (c) Naganuma, K.; Kawashima, T.; Okazaki, R. Chem. Lett. 1999, 28,
1139. (d) Speier, J. L. J. Am. Chem. Soc. 1952, 74, 1003. (e) West, R.;
Lowe, R.; Stewart, H. F.; Wright, A. J. Am. Chem. Soc. 1971, 93, 282.
(5)Forreviews: (a)Smith, A. B., III;Adams, C. M. Acc. Chem. Res. 2004,
37, 365. (b) Smith, A. B., III; Wuest, W. M. Chem. Commun. 2008, 45,
5883.
(6) Paredes, M. D.; Alonso, R. J. Org. Chem. 2000, 65, 2292 and
references therein.
(7) Maruyama, T.; Mizuno, Y.; Shimizu, I.; Suga, S.; Yoshida, J. J. Am.
Chem. Soc. 2007, 129, 1902.
(8) (a) Matsuoka, D.; Nishigaichi, Y. Chem. Lett. 2014, 43, 559.
experiments revealed the requirement for base, light, and
photocatalyst (eq 2). Without light or a photocatalyst, almost
all starting material remained. Also, if a base is not added to the
reaction, only a trace amount of 3b could be detected with the
conversion of 1b at 55% due to over-oxidation to form
benzaldehyde.
Notwithstanding the above results, consistent with the
proposed photoredox-catalyzed mechanism in Scheme 3, there
is the possibility of proton-coupled electron transfer (PCET)15
activation of the initial stronger O−H bond16 of the silyl alcohol,
followed by a radical Brook rearrangement to generate the
benzylic radical. Kinetic studies however revealed that although
the reaction rate decreases as the basicity of the anion decreases,
employing a higher oxidizing photocatalyst does not compensate
for the lower rate of the weaker base. Moreover, cyclic
voltammetry revealed no oxidation potential for 1b within the
tested range (0−2.00 V vs SCE in MeCN). Yet, in the presence of
CsOAc,anoxidationpotentialwasobserved(Eo1/2 =0.78VvsSCE
in MeCN), indicating the necessity of the base. Finally, when
employing weaker bases such as CsOBz, the oxidation potential
indicate the PCET model is less likely.
́
(b) Corce, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.;
Fensterbank, L. Angew. Chem., Int. Ed. 2015, 54, 11414. (c) Jouffroy, M.;
Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475.
(9)Chuit, C.;Corriu, R. J. P.;Reye, C.;Young, J. C. Chem. Rev. 1993, 93,
1371 and references therein.
(10) For reviews: (a) Hopkinson, M. N.; Sahoo, B.; Li, J.-L; Glorius, F.
Chem. - Eur. J. 2014, 20, 3874. (b) Romero, N. A.; Nicewicz, D. A. Chem.
Rev. 2016, 116, 10075. (c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem.
Rev. 2016, 116, 10035. (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C.
J. Org. Chem. 2016, 81, 6898 and references therein.
(11) Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. C. J. Am. Chem. Soc.
2014, 136, 626.
In summary, wehave designed and validated an oxidative [1,2]-
Brook rearrangement involving visible-light-induced SET ex-
ploiting the oxidation of a hypervalent silicon species. The
resulting alkyl radical was found to engage both in conjugate
additions to achieve formal alkylation and in radical coupling
reactions to achieve arylation. Studies to extend Brook rearrange-
ments involving visible-light-induced SET continue in our
laboratory.
(12) Bortolamei, N.; Isse, A. A.; Gennaro, A. Electrochim. Acta 2010, 55,
8312.
(13) Fischer, H. Chem. Rev. 2001, 101, 3581.
(14)Forexamples:(a) Hager, D.;MacMillan, D. W. C. J. Am. Chem. Soc.
2014, 136, 16986. (b) Cuthbertson, J. D.; MacMillan, D. W. C. Nature
2015, 519, 74.
(15) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546 and
references therein.
(16) There is only one report about PCET activation of O−H bond via
photoredox catalysis: Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H.
S.; Knowles, R. R. J. Am. Chem. Soc. 2016, 138, 10794.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
Experimental procedures, NMR spectra for obtained
compounds, and mechanistic studies (PDF)
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX