from 3 as detailed above. Similar decomposition or indeed
catalyst activation pathways may also be relevant in related
carbene copper-catalyzed reactions that involve a base.
7 (a) D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand,
Chem. Rev., 2000, 100, 39–91; (b) F. E. Hahn and M. C. Jahnke,
Angew. Chem., Int. Ed., 2008, 47, 3122–3172; (c) J. Vignolle,
X. Cattoen and D. Bourissou, Chem. Rev., 2009, 109, 3333–3384;
(d) M. Melaimi, M. Soleilhavoup and G. Bertrand, Angew. Chem.,
Int. Ed., 2010, 49, 8810–8849.
8 (a) P. Mathew, A. Neels and M. Albrecht, J. Am. Chem. Soc.,
2008, 130, 13534–13535; (b) J. D. Crowley, A.-L. Lee and
K. J. Kilpin, Aust. J. Chem., 2011, 64, 1118–1132.
ð1Þ
In summary, we have disclosed a rapid synthesis of mesoionic
compounds starting from synthetically versatile triazolium salts and
CsOH. Identical products are formed while treating the corre-
sponding triazolylidene cuprous salt with CsOH. Formation of the
mesoionic compound directly from the triazolium salt likely
involves the transient formation of a free carbene, while the reaction
from the copper complex presumably occurs via reductive carbene
hydroxide elimination from a putative [Cu(triazolylidene)(OH)]
intermediate. The low stability of this latter complex, e.g. when
compared to the analogous normal imidazole-derived NHC
congeners, provides further support for a more reactive M–Ccarbene
bond in mesoionic complexes.22 The smooth oxygen transfer may
have direct implications in using Cu-triazolylidene complexes as
catalysts. Perhaps more relevant, the synthetic methodology is
remarkably general and provides facile access to a wide range of
mesoionic compounds that have potential in their own right, e.g. as
new structural motifs in active pharmacological ingredients, and
also as a new class of ligands with a high degree of electronic
flexibility (cf. limiting resonance structures of 2).
9 (a) T. Nakamura, T. Terashima, K. Ogata and S.-I. Fukuzawa,
Org. Lett., 2011, 13, 620–623; (b) G. Venkatachalam,
M. Heckenroth, A. Neels and M. Albrecht, Helv. Chim. Acta,
2009, 92, 1034–1045.
10 (a) This reactivity pattern is in contrast to that established for
normal NHC copper complexes with anhydrous CsOH, see:
G. C. Fortman, A. M. Z. Slawin and S. P. Nolan, Organometallics,
2010, 29, 3966–3972(b) With the bulky triazolylidene copper
complex 3b, carbene transfer and formation of
a cationic
[Cu(triazolylidene)2]+ complex as a minor product were detected.
11 For examples, see: (a) G. Grassi, F. Risitano, F. Foti, M. Cardaro,
G. Bruno and F. Nicolo, Chem. Commun., 2003, 1868–1869;
(b) S. Araki, M. Kuzuya, K. Hamada, M. Nogura and
N. Ohata, Org. Biomol. Chem., 2003, 1, 978–983; (c) T. J. King,
P. N. Preston, J. S. Suffolk and K. Turnbull, J. Chem. Soc., Perkin
Trans. 2, 1979, 1751–1757; (d) K. Nielsen, Acta Chem. Scand., Ser. A,
1975, 29, 647–650; (e) H. Hope and W. Thiessen, Acta Crystallogr.,
Sect. B, 1969, 25, 1237–1247.
12 (a) G. Guisado-Barrios, J. Bouffard, B. Donnadieu and
G. Bertrand, Angew. Chem., Int. Ed., 2010, 49, 4759–4762;
(b) K. Ohmatsu, M. Kiyokawa and T. Ooi, J. Am. Chem. Soc.,
2011, 133, 1307–1309; (c) Q.-H. Liu, Y.-C. Li, Y.-Y. Li, Z. Wang,
W. Liu, C. Qi and S.-P. Pang, J. Mater. Chem., 2012, 22, 666–674;
(d) G. Kaplan, G. Drake, K. Tollison, L. Hall and T. Hawkins,
J. Heterocycl. Chem., 2005, 42, 19–27.
We thank Science Foundation Ireland and the European
Research Council for financial support and the reviewers for
helpful suggestions.
13 C. A. Citadelle, E. Le Nouy, F. Bisaro, A. M. Z. Slavin and C. S. J.
Cazin, Dalton Trans., 2010, 39, 4489–4491.
14 (a) M. Slivarichova, R. Ahmad, Y. Y. Kuo, J. Nunn,
M. F. Haddow, H. Othman and G. R. Owen, Organometallics,
2011, 30, 4779–4787; (b) R.-Z. Ku, J.-C. Huang, J.-Y. Cho,
F.-M. Kiang, K. R. Reddy, Y.-C. Chen, K.-J. Lee, J.-H. Lee,
G.-H. Lee, S.-M. Peng and S.-T. Liu, Organometallics, 1999, 18,
2145–2154.
15 V. Lavallo and R. H. Grubbs, Science, 2009, 326, 559–562.
16 (a) B.-L. Lin, P. Kang and T. D. P. Stack, Organometallics, 2010,
29, 3683–3685. Alternatively, a free carbene may be involved, see:
(b) O. Holloczki, P. Terleczky, D. Szieberth, G. Mourgas,
D. Gudat and L. Nyulaszi, J. Am. Chem. Soc., 2011, 133, 780–789.
17 An alternative process may include the addition of water over the
Notes and references
1 (a) A. Schonberg, J. Chem. Soc., 1938, 824–825; (b) IUPAC.
¨
Compendium of Chemical Terminology, 2nd edn (the ‘‘Gold
Book’’) compiled by A. D. McNaught and A. Wilkinson, Black-
well Scientific Publications, Oxford, 1997.
2 (a) W. D. Ollis and C. A. Ramsden, Adv. Heterocycl. Chem., 1976,
19, 1–122; (b) F. H. C. Stewart, Chem. Rev., 1964, 64, 129–147.
3 (a) P. A. Majid, P. J. F. Defeyter, E. E. van der Wall, R. Wardeh
and J. P. Roos, N. Engl. J. Med., 1980, 302, 1–6; (b) A. Senff-Ribeiro,
A. Echevarria, E. F. Silva, C. R. C. Franco, S. S. Veiga and M. B. M.
Oliveira, Br. J. Cancer, 2004, 91, 297–304.
C4–C5 double bond and transient dearomatization, see: A. Kruger
¨
and M. Albrecht, Aust. J. Chem., 2011, 64, 1113–1117.
18 (a) J. Bouffard, B. K. Keitz, R. Tonner, G. Guisado-Barrios,
G. Frenking, R. H. Grubbs and G. Bertrand, Organometallics,
2011, 30, 2617–2627; (b) A. Horvath, Synthesis, 1994, 102;
(c) D. Tumelty, K. Cao and C. P. Holmes, Org. Lett., 2001, 3, 83.
19 E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran,
G. Frenking and G. Bertrand, Science, 2009, 326, 556–559.
20 A. R. Chianese, B. M. Zeglis and R. H. Crabtree, Chem. Commun.,
2003, 2176–2177.
21 (a) S. Diez-Gonzalez, E. C. Escudero-Adan, J. Benet-Buchholz,
E. D. Stevens, A. M. Z. Slawin and S. P. Nolan, Dalton Trans.,
2010, 39, 7595–7606; (b) S. Diez-Gonzalez and S. P. Nolan, Angew.
Chem., Int. Ed., 2008, 47, 8881–8884; (c) S. Hohloch, C.-Y. Su and
B. Sarkar, Eur. J. Inorg. Chem., 2011, 3067–3075.
4 P. A. Abbott, R. V. Bonnert, M. V. Caffrey, P. A. Cage,
A. J. Cooke, D. K. Donald, M. Furber, S. Hill and J. Withnall,
Tetrahedron, 2002, 58, 3185–3198.
5 (a) M. Begtrup and C. Pedersen, Acta Chem. Scand., 1965, 19,
2022–2026; (b) K. T. Potts and S. Husain, J. Org. Chem., 1970, 35,
3451–3456; (c) A. Chinone and M. Ohta, Chem. Lett., 1972, 969–970;
(d) Y. I. Nein, A. Y. Polyakova, Y. Y. Morzherin, E. A. Savel’eva,
Y. A. Rozin and V. A. Bakulev, Russ. J. Org. Chem., 2004, 40, 879–883.
6 For other unusual adducts, see: (a) G. D. Frey, V. Lavallo,
B. Donnadieu, W. W. Schoeller and G. Bertrand, Science, 2007,
316, 439–441; (b) Y. Wang, Y. Xie, P. Wei, R. B. King,
H. F. Schaefer III, P. von R. Schleyer and G. H. Robinson,
Science, 2008, 321, 1069–1071; (c) R. Kinjo, B. Donnadieu,
M. A. Celik, G. Frenking and G. Bertrand, Science, 2011, 333,
610–613; (d) D. Mendoza-Espinosa, B. Donnadieu and
G. Bertrand, J. Am. Chem. Soc., 2010, 132, 7264–7265;
(e) G. Ung, G. D. Frey, W. W. Schoeller and G. Bertrand, Angew.
Chem., Int. Ed., 2011, 50, 9923–9925.
22 (a) D. Bacciu, K. J. Cavell, I. A. Fallis and L.-I. Ooi, Angew.
Chem., Int. Ed., 2005, 44, 5282–5284; (b) M. Heckenroth, A. Neels,
M. G. Garnier, P. Aebi, A. W. Ehlers and M. Albrecht, Chem.–Eur. J.,
2009, 15, 9375–9386.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6499–6501 6501