Constrained Glutamates via Ring Closing Reactions
(500 MHz): δ = 1.45 (s, 9 H), 1.56 (m, 1 H), 1.62–1.75 (m, 2 H),
1.82–1.90 (m, 2 H), 1.97 (m, 1 H), 2.53–2.65 (m, 2 H), 3.68 (s, 3
H), 4.26 (dd, J = 8.5 Hz, 1 H), 7.37 (d, J = 8.5 Hz, 1 H) ppm. 13C
NMR (125 MHz): δ = 25.1, 27.9, 29.9, 30.4, 45.1, 47.3, 52.2, 57.4,
6.3 Hz, 1 H), 2.66 (m, 1 H), 3.70 (s, 3 H), 4.23–4.34 (m, 3 H) ppm.
13C NMR (100 MHz): δ = 27.9, 29.2, 31.7, 52.1, 57.3, 66.5, 83.0,
168.2, 170.8 ppm. C14H20F3NO5 (325.28): calcd. C 48.00, H 5.58,
N 4.31; found C 48.07, H 5.39, N 4.28. HRMS calcd. for
83.2, 118.4 (J = 287.6 Hz), 156.9 (J = 37.8 Hz), 169.1, 176.4 ppm. C13H19F3NO5 [M + H]+: 326.1215, found 326.1193.
C15H22F3NO5 (354.15): calcd. C 50.99, H 6.28, N 3.96; found C
51.24, H 6.31, N 4.00. HRMS calcd. for C15H23F3NO5 [M + H]+:
354.1528, found 354.1503.
Acknowledgments
Pipecolinic Acid Derivative 12: According to the general procedure
This work was supported by the Deutsche Forschungsgemeinschaft
for Michael additions TFA-Gly-OtBu (86 mg, 0.38 mmol) was
(DFG) and by the Fonds der Chemischen Industrie.
treated with 9c (29 mg, 0.18 mmol). After stirring for 2 h and
warming the reaction mixture to –60 °C tBuOH (41 mg,
0.55 mmol) in THF (0.5 mL) was added. After 15 min DMPU
(2 mL) and NaI (10 mg, 0.07 mmol) were added. The reaction mix-
ture was warmed to room temperature over 24 h. Flash chromatog-
raphy (hexanes/EtOAc, first 9:1, then 8:2) gave rise to 12 (46 mg,
[1] a) K. Shimamoto, Y. Ohfune, J. Med. Chem. 1996, 39, 407–423
and references cited herein; b) K. Shimamoto, Y. Ohfune, Syn-
lett 1993, 919–920; c) P. L. Ornstein, T. J. Bleisch, M. B. Ar-
nold, R. A. Wright, B. G. Johnson, D. D. Schoepp, J. Med.
Chem. 1998, 41, 346–357; d) R. Pellicciari, G. Costantino, Curr.
Opin. Chem. Biol. 1999, 3, 433–440; e) M. G. Moloney, Nat.
Prod. Rep. 1999, 16, 485–498, and references therein.
[2] S. Murakami, T. Takemoto, Z. Shimizu, J. Pharm. Soc. Jpn.
1953, 73, 1026–1028.
1
0.13 mmol, 73%, 98% ds) as a colorless oil. H NMR (500 MHz):
δ = 1.43 (s, 9 H), 1.48–1.88 (m, 4 H), 2.26 (m, 1 H), 2.43 (dd, J =
16.8, 8.2 Hz, 1 H), 2.64 (dd, J = 16.8, 6.8 Hz, 1 H), 3.51 (ddd, J =
13.4, 13.4, 3.2 Hz, 1 H), 3.67 (s, 3 H), 3.87 (d, J = 13.4 Hz, 1 H),
5.16 (d, J = 5.2 Hz, 1 H) ppm. 13C NMR (125 MHz): δ = 25.1,
26.3, 27.9, 35.0, 37.5, 42.9 (J = 3.7 Hz), 51.7, 56.3, 82.9, 116.1 (J
= 287.1 Hz), 156.7 (J = 37.1 Hz), 167.9, 171.9 ppm. Minor rotamer
(selected signals): 1H NMR (500 MHz): δ = 1.45 (s, 9 H), 3.21 (ddd,
J = 13.4, 13.2, 2.9 Hz, 1 H), 3.68 (s, 3 H), 4.42 (d, J = 13.4 Hz, 1
H), 4.82 (d, J = 5.0 Hz, 1 H) ppm. 13C NMR (125 MHz): δ = 25.1,
26.4, 27.8, 35.8, 37.3, 40.3, 52.2, 58.2 (J = 3.1 Hz), 83.1, 167.7,
171.8 ppm. C15H22F3NO5 (354.15): calcd. C 50.99, H 6.28, N 3.96;
found C 51.40, H 6.34, N 3.56. HRMS calcd. for C15H23F3NO5
[M + H]+: 354.1528, found 354.1570.
[3] I. Nitta, H. Watase, Y. Tomiie, Nature (London) 1958, 181,
761–762.
[4] For a recent review, see: Q. Wang, S. Yu, A. Simonyi, G. Sun,
A. Sun, Mol. Neurobiol. 2005, 31, 3–16, and references therein.
[5] G. Sperk, Prog. Neurobiol. (Oxford) 1994, 42, 1–32.
[6] a) S. Goodenough, D. Schleusner, C. Pietrzik, T. Skutella, C.
Behl, Neuroscience (Oxford) 2005, 132, 581–589; b) A.
Mohmmad, R. Sultana, J. Keller, D. St. Clair, W. Markesbery,
D. Butterfield, J. Neurochem. 2006, 96, 1322–1335.
[7] a) J. T. Coyle, R. Schwarcz, Nature 1976, 263, 244–246; b) E. G.
McGeer, P. L. McGeer, Nature 1976, 263, 517–519.
[8] a) S. R. Landor, P. D. Landor, M. Kalli, J. Chem. Soc. Perkin
Trans. 1 1983, 2921–2925; b) H. Pajouhesh, J. Chen, S. H. Pa-
jouhesh, Tetrahedron: Asymmetry 2000, 11, 4537–4541.
[9] a) J. M. McIntosh, R. K. Leavitt, P. Mishra, K. C. Cassidy,
J. E. Drake, R. J. Chanda, J. Org. Chem. 1988, 53, 1947–1952;
b) R. Pellicciari, B. Natalini, M. Marinozzi, J. B. Monahan,
J. P. Snyder, Tetrahedron Lett. 1990, 31, 139–142; c) K. El Abdi-
oui, J. Martinez, P. Viallefont, Y. Vidal, Bull. Soc. Chim. Belg.
1997, 106, 425–431; d) J. Rifé, R. M. Ortuño, G. A. Lajoie, J.
Org. Chem. 1999, 64, 8958–8961; e) K. Godula, W. A. Don-
aldson, Tetrahedron Lett. 2001, 42, 153–154; f) D. K. Mohapa-
tra, J. Chem. Soc. Perkin Trans. 1 2001, 1851–1852; g) H. Pa-
jouhesh, K. Curry, H. Pajouhesh, M. H. Meresht, B. Patrick,
Tetrahedron: Asymmetry 2003, 14, 593–596.
Michael Addition Product 13: According to the general procedure
for Michael additions TFA-Gly-OtBu (136 mg, 0.60 mmol) was
treated with 2c (67 mg, 0.50 mmol) at –90 °C. After 30 min and
warming the reaction mixture to –78 °C the reaction was quenched
by 1 KHSO4 (1 mL). Flash chromatography (hexanes/EtOAc,
9:1) provided 13 (151 mg, 0.38 mmol, 84%, 98% ds) as a colorless
oil.
anti-13: 1H NMR (500 MHz): δ = 1.47 (s, 9 H), 2.85 (m, 1 H), 3.58
(dd, J = 11.5, 6.4 Hz, 1 H), 3.63 (dd, J = 11.5, 6.2 Hz, 1 H), (m, 1
H), 3.70 (s, 3 H), 4.72 (dd, J = 8.2, 4.9 Hz, 1 H), 7.62 (d, J =
8.2 Hz, 1 H) ppm. 13C NMR (125 MHz): δ = 27.9, 33.0, 39.6, 44.5,
52.3, 54.1, 84.2, 115.7 (J = 287.7 Hz), 157.4 (J = 37.6 Hz), 168.2,
172.4 ppm.
[10] a) R. D. Little, J. R. Dawson, Tetrahedron Lett. 1980, 21, 2609–
2612; b) P. Prempree, S. Radviroongit, Y. Thebtaranonth, J.
Org. Chem. 1983, 48, 3553–3556.
[11] Review: M. J. O’Donnell, Aldrichimica Acta 2001, 34, 3–15.
[12] M. Joucla, M. El Goumzili, B. Fouchet, Tetrahedron Lett.
1986, 27, 1677–1680.
syn-13: Selected signals. 1H NMR (500 MHz): δ = 1.48 (s, 9 H),
3.71 (s, 3 H), 4.76 (dd, J = 8.3, 4.7 Hz, 1 H), 7.48 (d, J = 8.3 Hz,
1 H) ppm. HRMS calcd. for C13H20ClF3NO5 [M + H]+: 362.0937,
found 362.1010.
[13] A. Mazón, C. Pedregal, W. Prowse, Tetrahedron 1999, 55,
7057–7064.
[14] S. Yoo, S. Lee, N. Kim, Tetrahedron Lett. 1988, 29, 2195–2196.
[15] M. J. S. Carpes, P. Miranda, C. R. Correira, Tetrahedron Lett.
1997, 38, 1869–1872.
[16] J. Sabol, G. Flynn, D. Friedrich, E. W. Huber, Tetrahedron Lett.
1997, 38, 3687–3690.
[17] P. Karoyan, G. Chassaing, Tetrahedron Lett. 2002, 43, 253–255.
[18] U. Kazmaier, Liebigs Ann./Recueil 1997, 285–295 and refer-
ences cited therein.
[19] a) M. Pohlman, U. Kazmaier, Org. Lett. 2003, 5, 2631–2633;
b) M. Pohlman, U. Kazmaier, T. Lindner, J. Org. Chem. 2004,
69, 6909–6912; c) B. Mendler, U. Kazmaier, V. Huch, M. Veith,
Org. Lett. 2005, 7, 2643–2646; d) B. Mendler, U. Kazmaier,
Synthesis 2005, 2239–2245.
[20] a) U. Kazmaier, F. L. Zumpe, Angew. Chem. 1999, 111, 1572–
1574; Angew. Chem. Int. Ed. 1999, 38, 1468–1470; b) U. Kaz-
Azetidine Derivative 14: According to the general procedure for
Michael additions TFA-Gly-OtBu (125 mg, 0.55 mmol) was treated
with 2c (54 mg, 0.40 mmol) at –78 °C. After 15 min HOAc (57 mg,
0.95 mmol) was added. DMPU (2 mL) and NaI (10 mg,
0.07 mmol) were added after further 15 min, and the cooling bath
was removed. After stirring for 5 d and flash chromatography (hex-
anes/EtOAc first 9:1, then 8:2) 14 (79 mg, 0.24 mmol, 61%, 90%
ds) was obtained as colorless oil. 1H NMR (400 MHz): δ = 1.46 (s,
9 H), 2.38 (dd, J = 16.9, 8.9 Hz, 1 H), 2.47 (dd, J = 16.9, 5.1 Hz,
1 H), 2.58 (m, 1 H), 3.68 (s, 3 H), 4.01 (dd, J = 4.6, 1.5 Hz, 1 H),
4.15 (ddd, J = 11.2, 5.3, 1.5 Hz, 1 H), 4.43 (dd, J = 11.2, 3.7 Hz,
1 H) ppm. 13C NMR (100 MHz): δ = 27.8, 29.7, 33.9, 52.0, 59.0,
66.8, 82.7, 116.3 (J = 287.1 Hz), 148.4 (J = 39.0 Hz), 168.9, 171.1
1
ppm. Minor rotamer (selected signals): H NMR (400 MHz): δ =
1.45 (s, 9 H), 2.22 (dd, J = 17.0, 8.5 Hz, 1 H), 2.38 (dd, J = 17.0,
Eur. J. Org. Chem. 2008, 887–894
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
893