Langmuir
Article
of 72-Membered Tetraether Model Compounds. Bull. Chem. Soc. Jpn.
1997, 70, 2545−2554.
Forschungsgemeinschaft (DFG), project DR 1024/1-1 (to
S.D.), and within the Forschergruppe FOR 1145 (to B.-D.L.
and A.B.). The support of Dr. Gerd Hause (Biocenter, Martin
Luther University Halle-Wittenberg) by providing us access to
the electron microscope facility is greatly appreciated.
(21) Eguchi, T.; Arakawa, K.; Terachi, T.; Kakinuma, K. Total
Synthesis of Archaeal 36-Membered Macrocyclic Diether Lipid. J. Org.
Chem. 1997, 62, 1924−1933.
(22) Eguchi, T.; Ibaragi, K.; Kakinuma, K. Total Synthesis of
Archaeal 72-Membered Macrocyclic Tetraether Lipids. J. Org. Chem.
1998, 63, 2689−2698.
(23) Arakawa, K.; Eguchi, T.; Kakinuma, K. An Olefin Metathesis
Approach to 36- and 72-Membered Archaeal Macrocyclic Membrane
Lipids. J. Org. Chem. 1998, 63, 4741−4745.
(24) Benvegnu, T.; Brard, M.; Plusquellec, D. Archaeabacteria bipolar
lipid analogues: structure, synthesis and lyotropic properties. Curr.
Opin. Colloid Interface Sci. 2004, 8, 469−479.
REFERENCES
■
(1) Woese, C. R.; fox, G. F. Phylogenetic structure of the prokaryotic
domain: The primary kingdoms. Proc. Natl. Acad. Sci. U. S. A. 1977, 74,
5088−5090.
(2) Koch, R.; Zablowski, P.; Spreinat, A.; Antranikian, G. Extremely
thermostable amylolytic enzyme from the archaebacterium Pyrococcus
furiosus. FEMS Microbiol. Lett. 1990, 71, 21−26.
(25) Brard, M.; Laine,
́
C.; Ret
́ ́
hore, G.; Laurent, I.; Neveu, C.;
(3) Woese, C. R.; Magrum, L. J.; Fox, G. E. Archaebacteria. J. Mol.
Evol. 1978, 11, 245−252.
Lemieg
̀
re, L.; Benvegnu, T. Synthesis of Archaeal Bipolar Lipid
Analogues: A Way to Versatile Drug/Gene Delivery Systems. J. Org.
Chem. 2007, 72, 8267−8279.
(26) Meister, A.; Blume, A. Self-assembly of bipolar amphiphiles.
Curr. Opin. Colloid Interface Sci. 2007, 12, 138−147.
(4) Baumeister, W.; Lembcke, G. Structural features of archaebacte-
rial cell envelopes. J. Bioenerg. Biomembr. 1992, 24, 567−575.
(5) Lewalter, K.; Muller, V. Bioenergetics of archaea: Ancient energy
̈
conserving mechanisms developed in the early history of life. Biochim.
Biophys. Acta, Bioenerg. 2006, 1757, 437−445.
̀
(27) Jacquemet, A.; Lemiegre, L.; Lambert, O.; Benvegnu, T. How
the Stereochemistry of a Central Cyclopentyl Ring Influences the Self-
Assembling Properties of Archaeal Lipid Analogues: Synthesis and
CryoTEM Observations. J. Org. Chem. 2011, 76, 9738−9747.
(28) Markowski, T.; Drescher, S.; Meister, A.; Hause, G.; Blume, A.;
Dobner, B. Synthesis of Optically Pure Diglycerol Tetraether Model
Lipids with Non-Natural Branching Pattern. Eur. J. Org. Chem. 2011,
2011, 5894−5904.
(6) Langworthy, T. A. Long-chain diglycerol tetraethers from
Thermoplasma acidophilum. Biochim. Biophys. Acta, Lipids Lipid
Metab. 1977, 487, 37−50.
(7) De Rosa, M.; Esposito, E.; Gambacorta, A.; Nicolaus, B.; Bu’Lock,
J. D. Effects of temperature on ether lipid composition of Caldariella
acidophila. Phytochemistry 1980, 19, 827−831.
(8) Nishihara, M.; Morii, H.; Koga, Y. Structure Determination of a
Quartet of Novel Tetraether Lipids from Methanobacterium
thermoautotrophicum. J. Biochem. 1987, 101, 1007−1015.
(9) Fuhrhop, J.-H.; Wang, T. Bolaamphiphiles. Chem. Rev. 2004, 104,
2901−2937.
(29) Markowski, T.; Drescher, S.; Meister, A.; Blume, A.; Dobner, B.
Structure-property relationships in a series of diglycerol tetraether
model lipids and their lyotropic assemblies: the effect of branching
topology and chirality. Org. Biomol. Chem. 2014, 12, 3649−3662.
(30) Drescher, S.; Meister, A.; Blume, A.; Karlsson, G.; Almgren, M.;
Dobner, B. General synthesis and aggregation behaviour of a series of
single-chain 1,ω-bis(phosphocholines). Chem. - Eur. J. 2007, 13,
5300−5307.
(10) Cornell, B. A.; Braach-Maksvytis, V. B. L.; King, L. G.; Osmann,
P. D. J.; Raguse, B.; L, W.; Pace, R. J. A biosensor that uses ion-channel
switches. Nature 1997, 387, 580−583.
(11) Bakowsky, U.; Rothe, U.; Antonopoulos, E.; Martini, T.;
Henkel, L.; Freisleben, H. J. Monomolecular organization of the main
tetraether lipid from Thermoplasma acidophilum at the water-air
interface. Chem. Phys. Lipids 2000, 105, 31−42.
(31) Drescher, S.; Dobner, B. Synthesis of novel asymmetrical single-
chain phosphoglycol-based bolaamphiphiles. Synth. Commun. 2014,
44, 564−573.
(32) Graf, G.; Drescher, S.; Meister, A.; Garamus, V. M.; Dobner, B.;
Blume, A. Tuning the Aggregation Behaviour of Single-Chain
Bolaamphiphiles in Aqueous Suspension by Changes in Headgroup
Asymmetry. Soft Matter 2013, 9, 9562−9571.
́ ́
(12) Benvegnu, T.; Rethore, G.; Brard, M.; Richter, W.; Plusquellec,
D. Archaeosomes based on novel synthetic tetraether-type lipids for
the development of oral delivery systems. Chem. Commun. 2005,
5536−5538.
́
(33) Drescher, S.; Lechner, B.-D.; Garamus, V. M.; Almasy, L.;
(13) Brown, D. A.; Venegas, B.; Cooke, P. H.; English, V.; Chong, P.
L.-G. Bipolar tetraether archaeosomes exhibit unusual stability against
autoclaving as studied by dynamic light scattering and electron
microscopy. Chem. Phys. Lipids 2009, 159, 95−103.
Meister, A.; Blume, A. The headgroup (a)symmetry strongly
determines the aggregation behavior of single-chain phenylene-
modified bolalipids and their miscibility with classical phospholipids.
Langmuir 2014, 30, 9273−9284.
́
(14) Jain, N.; Arntz, Y.; Goldschmidt, V. r.; Duportail, G.; Mely, Y.;
(34) Kameta, N.; Masuda, M.; Minamikawa, H.; Shimizu, T. Self-
Assembly and Thermal Phase Transition Behavior of Unsymmetrical
Bolaamphiphiles Having Glucose- and Amino-Hydrophilic Head-
groups. Langmuir 2007, 23, 4634−4641.
(35) Fuhrhop, J.-H.; Spiroski, D.; Boettcher, C. Molecular monolayer
rods and tubules made of α-(L-lysine),ω-(amino) bolaamphiphiles. J.
Am. Chem. Soc. 1993, 115, 1600−1601.
(36) Masuda, M.; Shimizu, T. Lipid nanotubes and microtubes:
experimental evidence for unsymmetrical monolayer membrane
formation from unsymmetrical bolaamphiphiles. Langmuir 2004, 20,
5969−5977.
(37) Kameta, N.; Masuda, M.; Minamikawa, H.; Mishima, Y.;
Yamashita, I.; Shimizu, T. Functionalizable Organic Nanochannels
Based on Lipid Nanotubes: Encapsulation and nanofluidic Behavior of
Biomacromolecules. Chem. Mater. 2007, 19, 3553−3560.
(38) Masuda, M.; Shimizu, T. Multilayer structure of an unsym-
metrical monolayer lipid membrane with a ’head-to-tail’ interface.
Chem. Commun. 2001, 2442−2443.
(39) Schwarz, M.; Oliver, J. E.; Sonnet, P. E. Synthesis of 3,11-
dimethyl-2-nonacosanone, a sex pheromone of the German cockroach.
J. Org. Chem. 1975, 40, 2410−2411.
Klymchenko, A. S. New Unsymmetrical Bolaamphiphiles: Synthesis,
Assembly with DNA, and Application for Gene Delivery. Bioconjugate
Chem. 2010, 21, 2110−2118.
(15) Nuraje, N.; Bai, H.; Su, K. Bolaamphiphilic molecules: Assembly
and applications. Prog. Polym. Sci. 2013, 38, 302−343.
(16) Krishnan, L.; Deschatelets, L.; Stark, F. C.; Gurnani, K.; Sprott,
G. D. Archaeosome Adjuvant Overcomes Tolerance to Tumor-
Associated Melanoma Antigens Inducing Protective CD8+ T Cell
Responses. Clin. Dev. Immunol. 2010, 2010, 1−13.
(17) Sprott, G. D.; Tolson, D. L.; Patel, G. B. Archaeosomes as novel
antigen delivery systems. FEMS Microbiol. Lett. 1997, 154, 17−22.
(18) Patel, G. B.; Agnew, B. J.; Deschatelets, L.; Fleming, L. P.;
Sprott, G. D. In vitro assessment of archaeosome stability for
developing oral delivery systems. Int. J. Pharm. 2000, 194, 39−49.
(19) Patel, G. P.; Ponce, A.; Zhou, H.; Chen, W. Safety of
Intranasally Administered Archaeal Lipid Mucosal Vaccine Adjuvant
and Delivery (AMVAD) Vaccine in Mice. Int. J. Toxicol. 2008, 27,
329−339.
(20) Eguchi, T.; Kano, H.; Arakawa, K.; Kakinuma, K. Synthetic
Studies of Archaeal Macrocyclic Tetraether Lipids: Practical Synthesis
I
Langmuir XXXX, XXX, XXX−XXX