ChemComm
Communication
´
´
A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat and A. Chenede,
Angew. Chem., Int. Ed., 2009, 48, 4605; (d) M. Uyanik, T. Yasui and
K. Ishihara, Angew. Chem., Int. Ed., 2010, 49, 2175; (e) M. Uyanik,
T. Yasui and K. Ishihara, Tetrahedron, 2010, 66, 5841; ( f ) J.-L. Liang,
S.-X. Yuan, P. W. H. Chan and C.-M. Che, Tetrahedron Lett., 2003,
44, 5917; (g) J. V. Mulcahy and J. Du Bois, J. Am. Chem. Soc., 2008,
130, 12630; (h) J. Zhu, N. P. Grigoriadis, J. P. Lee and J. A. Porco, Jr.,
J. Am. Chem. Soc., 2005, 127, 9342; (i) A. R. Germain, D. M. Bruggemeyer,
J. Zhu, C. Genet, P. O’Brien and J. A. Porco, Jr., J. Org. Chem., 2011,
76, 2577; ( j) S. Dong, J. Zhu and J. A. Porco, Jr., J. Am. Chem. Soc., 2008,
130, 2738; (k) M. Movassaghi, M. A. Schmidt and J. A. Ashenhurst, Org.
Lett., 2008, 10, 4009; (l) F. Kolundzic, M. N. Noshi, M. Tjandra,
M. Movassaghi and S. J. Miller, J. Am. Chem. Soc., 2011, 133, 9104;
(m) S. Han and M. Movassaghi, J. Am. Chem. Soc., 2011, 133, 10768.
4 (a) M. Breuning and E. J. Corey, Org. Lett., 2001, 3, 1559;
(b) R. Imbos, A. J. Minnaard and B. L. Feringa, J. Am. Chem. Soc.,
2002, 124, 184; (c) Q. Liu and T. Rovis, J. Am. Chem. Soc., 2006,
128, 2552; (d) Q. Liu and T. Rovis, Org. Process Res. Dev., 2007,
11, 598; (e) D. M. Rubush, M. A. Morges, B. J. Rose, D. H. Thamm
and T. Rovis, J. Am. Chem. Soc., 2012, 134, 13554; ( f ) N. T. Vo,
R. D. M. Pace, F. O’Hara and M. J. Gaunt, J. Am. Chem. Soc., 2008,
130, 404; (g) R. Leon, A. Jawalekar, T. Redert and M. J. Gaunt, Chem.
Sci., 2011, 2, 1487; (h) J. Keilitz, S. G. Newman and M. Lautens, Org.
Lett., 2013, 15, 1148; (i) Q. Gu, Z.-Q. Rong, C. Zheng and S.-L. You,
J. Am. Chem. Soc., 2010, 132, 4056; ( j) Q. Gu and S.-L. You, Chem.
Sci., 2011, 2, 1519; (k) Q. Gu and S.-L. You, Org. Lett., 2011, 13, 5192;
(l) M.-Q. Jia and S.-L. You, Chem. Commun., 2012, 48, 6363;
(m) M.-Q. Jia and S.-L. You, Synlett, 2013, 1201.
Scheme 3 Epoxidation of 1a and 1c with ligand 3f.12
(85% ee for 2p, 75% ee for 2q, Scheme 2). In contrast to
the results from those substrates without 2-substituents, the
N-protecting group was not necessary for this type of substrates
to obtain good enantioselectivity. A gram-scale reaction was
carried out for 1c, and the desired product could be obtained in
66% yield and 87% ee, which were comparable with those of
the 0.5 mmol scale reaction (entry 6, Table 2).12
Inspired by the results obtained for 2p and 2q, we envisaged
that the substrates without the N-protecting group might
provide good levels of enantioselectivity with an optimal chiral
ligand. To our delight, the preliminary results indicated that a very
simple BHA ligand 3f could provide similar reasonable results for
substrates 1a and 1c (Scheme 3). These results indicated that with a
suitable chiral ligand, the tryptophol derivatives with or without the
substituted group on indole N could all be suitable substrates for
this cascade reaction to deliver the 3a-hydroxyfuroindoline deriva-
tives with good enantioselectivity. It should also be mentioned that
due to the inherent stability of the chiral vanadium catalyst to
moisture and air, the reaction could be operated in air with a readily
available aqueous oxidant (70 wt% aqueous solution of
tBuOOH for the present reaction).
In summary, we have developed an enantioselective epoxidative
dearomatization of tryptophols followed by an intramolecular
epoxide opening reaction to construct the framework of enantio-
enriched 3a-hydroxyfuroindoline derivatives in moderate yields and
good levels of enantioselectivity. Further extension of the reaction
scope and the synthetic application of this methodology are
currently underway in our laboratory.
We thank the National Basic Research Program of China
(973 Program 2010CB833300) and the National Natural Science
Foundation of China (21025209, 21121062, 21272252, 21332009)
for generous financial support and Professor Hisashi Yamamoto
for helpful discussions.
5 T. Suzuki, J.-H. Choi, T. Kawaguchi, K. Yamashita, A. Morita,
¯
H. Hirai, K. Nagai, T. Hirose, S. Omura, T. Sunazuka and
H. Kawagishi, Bioorg. Med. Chem. Lett., 2012, 22, 4246.
6 (a) T. Sunazuka, T. Hirose, T. Shirahata, Y. Harigaya, M. Hayashi,
¯
K. Komiyama, S. Omura and A. B. Smith, III, J. Am. Chem. Soc., 2000,
122, 2122; (b) T. Sunazuka, K. Yoshida, N. Kojima, T. Shirahata,
T. Hirose, M. Handa, D. Yamamoto, Y. Harigaya, I. Kuwajima and
¯
S. Omura, Tetrahedron Lett., 2005, 46, 1459; (c) T. Hirose,
T. Sunazuka, D. Yamamoto, N. Kojima, T. Shirahata, Y. Harigaya,
¯
I. Kuwajima and S. Omura, Tetrahedron, 2005, 61, 6015.
7 S. Hosokawa, K. Sekiguchi, K. Hayase, Y. Hirukawa and
S. Kobayashi, Tetrahedron Lett., 2000, 41, 6435.
8 T. Ideguchi, T. Yamada, T. Shirahata, T. Hirose, A. Sugawara,
¯
Y. Kobayashi, S. Omura and T. Sunazuka, J. Am. Chem. Soc., 2013,
135, 12568.
9 For recent reviews, see: (a) O. A. Wong and Y. Shi, Chem. Rev., 2008,
108, 3958; (b) G. De Faveri, G. Ilyashenko and M. Watkinson, Chem.
Soc. Rev., 2011, 40, 1722.
10 (a) W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino and H. Yamamoto,
Angew. Chem., Int. Ed., 2005, 44, 4389; (b) A. U. Barlan, A. Basak and
H. Yamamoto, Angew. Chem., Int. Ed., 2006, 45, 5849; (c) A. Basak,
A. U. Barlan and H. Yamamoto, Tetrahedron: Asymmetry, 2006,
17, 508; (d) W. Zhang and H. Yamamoto, J. Am. Chem. Soc., 2007,
129, 286; (e) A. U. Barlan, W. Zhang and H. Yamamoto, Tetrahedron,
2007, 63, 6075; ( f ) Z. Li, W. Zhang and H. Yamamoto, Angew. Chem.,
Int. Ed., 2008, 47, 7520; (g) Z. Li and H. Yamamoto, J. Am. Chem. Soc.,
2010, 132, 7878; (h) J. L. Olivares-Romero, Z. Li and H. Yamamoto,
J. Am. Chem. Soc., 2012, 134, 5440; (i) J. L. Olivares-Romero, Z. Li and
H. Yamamoto, J. Am. Chem. Soc., 2013, 135, 3411; for a recent review:
( j) Z. Li and H. Yamamoto, Acc. Chem. Res., 2013, 46, 506.
11 (a) Q.-F. Wu, H. He, W.-B. Liu and S.-L. You, J. Am. Chem. Soc., 2010,
132, 11418; (b) Q.-F. Wu, W.-B. Liu, C.-X. Zhuo, Z.-Q. Rong, K.-Y. Ye
and S.-L. You, Angew. Chem., Int. Ed., 2011, 50, 4455; (c) Q. Cai,
C. Zheng, J.-W. Zhang and S.-L. You, Angew. Chem., Int. Ed., 2011,
50, 8665; (d) C.-X. Zhuo, W.-B. Liu, Q.-F. Wu and S.-L. You, Chem.
Sci., 2012, 3, 205; (e) Q.-F. Wu, C. Zheng and S.-L. You, Angew. Chem.,
Int. Ed., 2012, 51, 1680; ( f ) Q. Cai and S.-L. You, Org. Lett., 2012,
14, 3040; (g) Q. Cai, C. Liu, X.-W. Liang and S.-L. You, Org. Lett.,
2012, 14, 4588; (h) C.-X. Zhuo and S.-L. You, Angew. Chem., Int. Ed.,
2013, 52, 10056; (i) Q.-L. Xu, L.-X. Dai and S.-L. You, Chem. Sci., 2013,
4, 97; ( j) Q. Yin and S.-L. You, Org. Lett., 2013, 15, 4266.
Notes and references
1 For recent reviews, see: (a) S. P. Roche and J. A. Porco, Jr., Angew.
Chem., Int. Ed., 2011, 50, 4068; (b) C.-X. Zhuo, W. Zhang and S.-L. You,
Angew. Chem., Int. Ed., 2012, 51, 12662.
´
2 For recent reviews, see: (a) S. Quideau, L. Pouysegu and D. Deffieux,
´
Synlett, 2008, 467; (b) L. Pouysegu, T. Sylla, T. Garnier, L. B. Rojas,
J. Charris, D. Deffieux and S. Quideau, Tetrahedron, 2010, 66, 5908;
for a recent elegant example: (c) J. An, Y.-Q. Zou, Q.-Q. Yang,
Q. Wang and W.-J. Xiao, Adv. Synth. Catal., 2013, 355, 1483.
3 (a) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji,
H. Fujioka, S. B. Caemmerer and Y. Kita, Angew. Chem., Int. Ed.,
2008, 47, 3787; (b) J. K. Boppisetti and V. B. Birman, Org. Lett., 2009,
11, 1221; (c) S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, 12 For detailed information, see the ESI†.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 1231--1233 | 1233