422
I. Damager et al.
PAPER
23
23
[ ]D +116.4 (c = 0.08, CHCl3), Lit.12 [ ]D +114 (c = 0.63,
Phenyl O-(2,3,4,6-Tetra-O-acetyl- -D-glucopyranosyl)-(1 4)-
O-(2,3,6-tri-O-acetyl- -D-glucopyranosyl)-(1 4)-2,3-di-O-acet-
yl-1-thio- -D-glucopyranoside (5)
CHCl3).
1H NMR (CDCl3): = 2.00, 2.00, 2.03, 2.03, 3.03, 2.04, 2.08, 2.10,
2.11, 2.16 (10 s, 30 H, 10 COCH3), 3.67 (m, 1 H, H-5), 3.89 3.96
(m, 3 H, H-4´, H-5´, H-5´´), 4.05 (dd, 1 H, J5´´,6´´a = 2.0 Hz, J6´´a,
6´´b = 12.3 Hz, H-6´´a), 4.09 (t, 1 H, J3,4 = J4,5 = 9.7 Hz, H-4), 4.18
(dd, 1 H, J5´,6´b = 2.3 Hz, J 6´a,6´b = 12.3 Hz, H-6´b), 4.24 (dd, 1 H,
J5´´,6´´b = 3.7 Hz, H-6´´b), 4.29 (dd, 1 H, J5,6b = 4.3 Hz, J6a,6b, = 12.3
Hz, H-6b), 4.41 (dd, 1 H, J5,6a = 3.3 Hz, H-6a), 4.46 (bd, 1 H, H-
6´a), 4.74 (dd, 1 H, J2´,3´ = 10.7 Hz, H-2´), 4.85 (dd, 1 H,
To a stirred soln of 4 (18.34 g, 21.21 mmol) in anhyd CH2Cl2 (400
mL) was added phenylthio-trimethylsilane (24 mL, 127.26 mmol),
zinc iodide (40.62 g, 127.26 mmol) and stirring was continued at r.t.
for 17 h. The reaction mixture was filtered through a pad of sea sand
over a silica gel layer. To the filtrate was added solid NaHCO3 (15
g), the solvent was evaporated and the residue obtained was dis-
solved in EtOAc (400 mL) and sat. aq NaHCO3 (300 mL). The or-
ganic phase was separated and washed with 1 M aq NaOH (300
mL), water (3 × 300 mL), and brine (300 mL), then dried and evap-
orated. The residue was chromatographed on silica gel (320 g) with
Et2O pentane (4:1) as eluent to remove all impurities. Elution with
Et2O afforded compound 5, which crystallised from EtOH as white
crystals (18.69 g, 90%): mp 141.1 °C.
J
2´´,3´´ = 10.7 Hz, H-2´´), 5.07 (t, 1 H, J3´´4´´ = J4´´,5´´ = 10.3 Hz, H-
4´´), 5.23 (dd, 1 H, J2,3 = 8.5 Hz, H-2), 5.27 (d, 1 H, J1,2 = 7.9 Hz,
H-1), 5.31 (d, 1 H, J1´,2´ = 4.3 Hz, H-1´), 5.34 (dd, 1 H, H-3), 5.35
(dd, 1 H, H-3´´), 5.37 (t, 1 H, J3´,4´ = 10.7 Hz, H-3´), 5.41 (d, 1 H,
J1´´,2´´ = 4.3 Hz, H-1´´).
13C NMR (CDCl3): = 20.5 (3 COCH3), 20.6 (2 COCH3), 20.8
(3 COCH3), 20.9 (2 COCH3), 61.4 (C-6´´), 62.2 (C-6), 62.3 (C-
6´), 67.9, 68.5, 69.0, 69.3, 70.0, 70.4, 71.7, 72.2, 72.3, 72.5, 73.5,
74.9 (C-2, C-3, C-4, C-5, C-2´, C-3´, C-4´, C-5´, C-2´´, C-3´´, C-4´´,
C-5´´), 95.6, 95.7, 100.3 (C-1, C-1´, C-1´´), 128.6 (2 Ar-C), 130.6
(Ar-C), 132.0 (2 Ar-C), 147.8 (Ar-C), 169.4 (COCH3), 169.6
(COCH3), 169.7 (COCH3), 169.8 (COCH3), 170.1 (2 COCH3),
170.3 (COCH3), 170.5 (3 COCH3).
[ ]D23 +72.0 (c = 0.36, CHCl3).
1H NMR (CDCl3): = 1.98, 2.00, 2.00, 2.03, 2.04, 2.05, 2.06, 2.10,
2.15 (9 s, 27 H, 9 COCH3), 3.58 (m, 1 H, H-5), 3.85 (dd, 1 H,
J5,6b = 3.5 Hz, J6a,6b = 12.7 Hz, H-6b), 3.86 3.98 (m, 3 H, H-4´, H-
5´, H-5´´), 4.01 (dd, 1 H, J5,6a = 2.4 Hz, H-6a), 4.05 (dd, 1 H,
J
J
5´´,6´´a = 2.5 Hz, J6´´a,6´´b = 12.7 Hz, H-6´´a), 4.08 (t, 1 H,
3,4 = J4,5 = 9.4 Hz, H-4), 4.20 4.28 (m, 2 H, H-6´b, H-6´´b), 4.47
(dd, 1 H, J5´,6´a = 2.0 Hz, J6´a,6´b = 12.3 Hz, H-6´a), 4.71 (dd, 1 H,
2´,3´ = 10.4 Hz, H-2´), 4.79 (t, 1 H, J2,3 = 10.1 Hz, H-2), 4.80 (d, 1
Anal. Calcd for C44H51Cl5O26 (1173.14): C, 45.05; H, 4.38. Found:
C, 44.86; H, 4.51.
J
H, J1,2 = 10.1 Hz, H-1), 4.85 (dd, 1 H, J2´´,3´´ = 10.4 Hz, H-2´´), 5.06
(t, 1 H, J3´´,4´´ = J4´´,5´´ = 10.2 Hz, H-4´´), 5.31 (d, 1 H, J1´,2´ = 4.1 Hz,
H-1´), 5.33 (dd, 1 H, H-3), 5.37 (t, 1 H, J3´,4´ = 10.4 Hz, H-3´), 5.38
(t, 1 H, H-3´´), 5.40 (d, 1 H, J1´´,2´´ = 4.1 Hz, H-1´´), 7.33 7.48 (m,
5 H, Ar-H).
O-(2,3,4,6-Tetra-O-acetyl- -D-glucopyranosyl)-(1 4)-O-(2,3,6-
tri-O-acetyl- -D-glucopyranosyl)-(1 4)-2,3-di-O-acetyl-1,6-
anhydro- -D-glucopyranose (4)
A stirred suspension of 3 (9.18 g, 7.83 mmol) in 4 M aq KOH (50
mL) was refluxed at 120 °C for 20 h. The mixture was cooled to 0
°C, neutralised with 3 M H2SO4 and filtered. The filtrate was evap-
orated first and then coevaporated with toluene (3 50 mL). The
residue obtained was refluxed at 170 °C for 2.5 h with anhyd
NaOAc (9 g) and Ac2O (90 mL). The mixture was cooled to r.t.,
evaporated first, then the residue coevaporated with toluene (3 50
mL). The residue was dissolved in EtOAc (200 mL) and sat. aq
NaHCO3 (150 mL). The organic phase was separated and washed
with 1 M aq NaOH (15 mL), H2O (15 mL) and brine (15 mL), then
dried and evaporated. The residue was chromatographed on silica
gel (210 g) with CHCl3 EtOAc (1:1) as eluent to afford 4, which
crystallised from EtOH as white crystals (5.74 g, 85%): mp 155.0
°C, Lit.12 mp 159 161 °C, Lit.34 mp 156.5 157 °C.
13C NMR (CDCl3): = 20.9 (COCH3), 21.0 (COCH3), 21.1 (4
COCH3), 21.2 (COCH3), 21.3 (COCH3), 22.7 (COCH3), 61.8, 61.8,
63.1 (C-6, C-6´, C-6´´), 68.0, 68.4, 68.7, 69.4, 69.9, 70.6, 70.9, 71.0,
71.8, 72.5, 76.4, 78.5 (C-2, C-3, C-4, C-5, C-2´, C-3´, C-4´, C-5´, C-
2´´, C-3´´, C-4´´, C-5´´), 85.4 (C-1´), 95.2, 95.6 (C-1, C-1´´), 128.8
(Ar-C), 129.5 (2 Ar-C), 132.1 (Ar-C), 133.2 (2 Ar-C), 169.9 (2
C=O), 170.1 (C=O), 170.3 (C=O), 170.6 (C=O), 170.9 (2 C=O),
171.0 (2 C=O).
Anal. Calcd for C42H54O24S (974.93): C, 51.74; H, 5.58; S, 3.29.
Found: C, 51.33; H, 5.63; S, 3.46.
Phenyl O-(2,3,4,6-Tetra-O-acetyl- -D-glucopyranosyl)-(1 4)-
O-(2,3,6-tri-O-acetyl- -D-glucopyranosyl)-(1 4)-2,3-di-O-
acetyl-6-O-(triphenylmethyl)-1-thio- -D-glucopyranoside (6)
To a stirred soln of 5 (12.00 g, 12.3 mmol) in anhyd pyridine (100
mL) was added triphenylchloromethane (34.3 g, 61.5 mmol). The
mixture was refluxed at 140 °C for 1 h with exclusion of moisture
by fitting a CaCl2 tube on top of the condenser. The solvent was
evaporated and the residue was coevaporated with toluene (3 100
mL). The residue was chromatographed on silica gel (320 g) with
pentane and Et2O–pentane (4:1) afforded 6¸ which crystallised from
EtOH as white crystals (13.12 g, 88%): mp 155.1 °C.
[ ]D27 +83.2 (c = 0.38, CHCl3), Lit.12 [ ]D23 +89 (c = 0.46, CHCl3),
Lit.34 [ ]D15 +82.4 (c = 1.5, CHCl3).
1H NMR (CDCl3): = 2.00, 2.01, 2.03, 2.04, 2.04, 2.10, 2.10, 2.13,
2.21 (9 s, 27 H, COCH3), 3.48 (br s, 1 H, H-4), 3.81 (dd,1 H,
J5,6a = 5.3 Hz, J6a,6b = 7.6 Hz, H-6a), 3.96 4.03 (m, 3 H, H-6b, H-
4´, H-5´´), 4.06 (dd, 1 H, J5´´,6´´a = 2.3 Hz, J6´´a,6´´b = 12.3 Hz, H-
6´´a), 4.22 (dd, 1 H, J5´,6´b = 3.8 Hz, J6´a,6´b = 12.6 Hz, H-6´b), 4.25
(dd, 1 H, J5´´,6´´b = 3.5 Hz, H-6´´b), 4.40 (dt, 1 H, J5´,6´a = 2.6 Hz,
J4´,5´ = 9.9 Hz, H-5´), 4.51 (dd, 1 H, H-6´a), 4.60 (br s, 1 H, H-2),
4.72 (dd, 1 H, J2´,3´ = 10.2 Hz, H-2´), 4.78 (bd, J5,6b = 5.3 Hz, H-5),
4.84 (t, 1 H, J2,3 = J3,4 = 1.5 Hz, H-3), 4.89 (dd, 1 H, J2´´,3´´ = 10.5
Hz, H-2´´), 5.08 (t, 1 H, J3´´,4´´ = 9.7 Hz, J4´´,5´´ = 9.9 Hz, H-4´´),
5.19 (d, 1 H, J1´,2´ = 3.8 Hz, H-1´), 5.37 (dd, 1 H, H-3´´), 5.42 (d, 1
H, J1´´,2´´ = 3.8 Hz, H-1´´), 5.50 (br s, 1 H, H-1), 5.57 (dd, 1 H,
[ ]D23 +80.0 (c = 0.24, CHCl3).
1H NMR (CDCl3): = 1.95, 1.96, 1.98, 2.00, 2.02, 2.06, 2.09, 2.09,
2.11 (9 s, 27 H, 9 COCH3), 3.32 3.40 (m, 2 H, H-5, H-5´), 3.48
3.53 (m, 2 H, H-6a, H-6b), 3.65 3.82 (m, 4 H, H-4, H-4´, H-5´´, H-
6´b), 3.89 (dd, 1 H, J5´,6´a = 2.0 Hz, J6´a,6´b = 12.1 Hz, H-6´a), 4.02
(dd, 1 H, J5´´,6´´a = 2.3 Hz, J6´´a,6´´b = 12.5 Hz, H-6´´a), 4.25 (dd, 1 H,
J5´´,6´´b = 3.4 Hz, H-6´´b), 4.63 (dd, 1 H, J2´,3´ = 10.5 Hz, H-2´), 4.73
(d, 1 H, J1,2 = 10.1 Hz, H-1), 4.84 4.92 (m, 2 H, H-2, H-2´´), 4.99
(d, 1 H, J1´,2´ = 4.0 Hz, H-1´), 5.10 (t, 1 H, J3´´,4´´ = 9.8 Hz,
J3´,4´ = 9.1 Hz, H-3´).
13C NMR (CDCl3): 20.5 (4 COCH3), 20.6, 20.8 (3 COCH3),
20.9 (2 COCH3), 61.3 (C-6´´), 62.7 (C-6´), 64.9 (C-6), 68.0 (C-
4´´), 68.3 (C-5´´), 68.4 (C-5´), 68.5 (C-2), 69.2 (C-3´´), 69.9 (C-2´´),
70.3 (C-3), 71.1 (C-2´), 72.2 (C-3´), 72.6 (C-4´), 74.2 (C-5), 76.7
(C-4), 95.7 (C-1´´), 96.8 (C-1´), 99.0 (C-1), 169.3 (2 C=O), 169.6
(C=O), 169.7 (C=O), 170.0 (C=O), 170.4 (3 C=O), 170.5 (C=O).
J4´´,5´´ = 10.4 Hz, H-4´´), 5.17 (dd, 1 H, J2,3 = J3,4 = 8.7 Hz, H-3),
5.19 (dd, 1 H, J3´,4´ = 9.0 Hz, H-3´), 5.38 (d, 1 H, J1´´,2´´ = 4.0 Hz, H-
1´´), 5.43 (dd, 1 H, J 2´´,3´´ = 9.8 Hz, H-3´´), 7.18 7.60 (m, 20 H, Ar-
H).
Synthesis 2002, No. 3, 418–426 ISSN 0039-7881 © Thieme Stuttgart · New York