ChemComm
Communication
Table 2 Enantioselective hydroformylation of vinyl arenes catalysed by
Rh/(S,S,S)-BOBPHOS
We thank Dr Reddys Laboratories (UK), the EPSRC-Chemistry
Innovation Network, and the Royal Society for funding.
Notes and references
‡ We also note here that when we have used a significant excess of
ligand (e.g. L : Rh of 2.5 : 1), rather than observe inhibition, the reaction
proceeded slightly faster than using the complex formed from [Rh(acac)-
(CO)2] and BOBPHOS without large excess of ligand. Whether excess
ligand prevents catalyst decomposition needs to investigated in our
future mechanistic studies. We certainly recommend an excess of ligand
for the no-solvent + no activation process.
1 (a) P. W. N. M. Van Leeuwen and C. Claver, Rhodium Catalysed
Hydroformylation, Kluwer Academic Publishers, Dordrecht, 2000;
Temp. Timea Catalyst Conversionb
´
(b) F. Ungvary, Coord. Chem. Rev., 2004, 248, 867; (c) M. Dieguez,
Entry Substrate (1C)
(h)
(mol%) (%)
b : l b eeb
`
O. Pamies and C. Claver, Tetrahedron: Asymmetry, 2004, 15, 2113;
(d) B. Breit and W. Seiche, Synthesis, 2001, 1; (e) R. Franke, D. Selent
1c
2
2a
2a
3a
4a
5a
5a
30
30
30
45
30
60
3
0.5c
0.5
0.5
0.05
0.5
0.4
>99
>99
>99 [89]
>99 [89]
>99 [96]
52 [46]
>80 89
>80 89
>80 89
54 90
75 86
48 89
¨
and A. Borner, Chem. Rev., 2012, 112, 5675.
3.5
4.5
9
6
1
2 (a) K. Nozaki, N. Sakai, T. Nanno, T. Higashijima, S. Mano, T. Horiuchi
and H. Takaya, J. Am. Chem. Soc., 1997, 119, 4413; (b) K. Nozaki, T. Matsuo,
F. Shibahara and T. Hiyama, Adv. Synth. Catal., 2001, 343, 61; (c) Y. Yan
and X. Zhang, J. Am. Chem. Soc., 2006, 123, 7198; (d) F. Doro, J. N. H.
Reek and P. W. N. M. van Leeuwen, Organometallics, 2010, 29, 4440;
3
4c,d
5
6e
´
´
a
(e) M. Rubio, A. Suarez, E. Alvarez, C. Bianchini, W. Oberhauser,
M. Peruzzini and A. Pizzano, Organometallics, 2007, 26, 6428;
( f ) A. L. Watkins, B. G. Hashiguchi and C. R. Landis, Org. Lett.,
2008, 10, 4553; (g) J. Wassenaar, B. de Bruin and J. N. H. Reek,
Organometallics, 2010, 29, 2767; (h) C. G. Arena, F. Faraone, C. Graiff
and A. Tiripicchio, Eur. J. Inorg. Chem., 2002, 711; (i) X. Zhang, B. Cao,
Y. Yan, S. Yu, B. Ji and X. Zhang, Chem.–Eur. J., 2010, 16, 871.
3 (a) C. J. Cobley, K. Gardner, J. Klosin, C. Praquin, C. Hill, G. T.
Whiteker, A. Zanotti-Gerosa, J. L. Peterson and K. A. Abboud, J. Org.
The reaction times refer to either total reaction time, or if >99%
complete, time after which >99% of gas was consumed. Constant pressure
of 4 bar used, and a ligand : Rh ratio of 1.25 was used and [styrene] = 0.5 M
in toluene except where noted. b Conversion and b:l determined by
1H NMR (alkyl protons either against cyclooctane internal standard or
alkene protons), and confirmed by GC. >80 : 1 refers to either undetectable
linear aldehyde or measured values of c. 99% branched aldehyde content.
[Unoptimised yields of aldehydes of high purity (spectra in ESI).] The ee was
c
measured using capillary GC or HPLC (see ESI). Ligand : Rh ratio of 2.5 : 1.
´
`
´
d
e
Chem., 2004, 69, 4031; (b) M. Dieguez, O. Pamies, A. Ruiz, S. Castillon
and C. Claver, Chem.–Eur. J., 2001, 7, 3086; (c) S. H. Chikkali,
R. Bellini, B. de Bruin, J. I. van der Vlugt and J. N. H. Reek, J. Am.
Chem. Soc., 2012, 134, 6607; (d) C. J. Cobley, J. Klosin, C. Qin and
G. T. Whiteker, Org. Lett., 2004, 6, 3277; (e) S. Breeden, D. J. Cole-
Hamilton, D. F. Foster, G. J. Schwarz and M. Wills, Angew. Chem., Int.
Ed., 2000, 39, 4106; ( f ) J. E. Babin and G. T. Whiteker, WO93/03839,
1993; (g) T. P. Clark, C. R. Landis, S. L. Feed, J. Klosin and K. A. Abboud,
J. Am. Chem. Soc., 2005, 127, 5040; (h) A. T. Axtell, C. J. Cobley, J. Klosin,
G. T. Whiteker, A. Zanotti-Gerosa and K. A. Abboud, Angew. Chem., Int.
Ed., 2005, 44, 5834; (i) R. Ewalds, E. B. Eggeling, A. C. Hewat,
P. C. J. Kamer, O. W. N. M. Van Leeuwen and D. Vogt, Chem.–Eur. J.,
No solvent. 0.4% Rh, 0.5% ligand.
While many papers only report studies on styrene as a model
substrate, some of the more synthetically useful publications
also report other vinyl arenes. These can give less desirable
results in some cases; in the case of asymmetric hydroformyl-
ation of 4-chlorostyrene and 4-methoxystyrene, the class-leading
Landis ligands report a desired isomer yield down to 86.9% and
81% due to a drop-off in ee. We studied alkenes 2a and 3a under
the unoptimised low temperature conditions. The results
obtained for the 3- and 4-chloro styrenes (desired isomer yield
B94–95%) appear to be the best observed for these substrates.
Reactions were complete in several hours. To investigate if
more electron donating vinyl arenes could be used, we also
studied the hydroformylation of 4-vinyl anisole under solvent-
free conditions and got excellent results with a desired isomer
yield of 93.3%. 2-Methoxy-6-vinyl-naphthalene also gave good
results, although not quite matching the very best2f reported
(Table 2, entries 5 and 6).
´
2000, 6, 1496; ( j) G. M. Noonan, D. Newton, C. J. Cobley, A. Suarez,
A. Pizzano and M. L. Clarke, Adv. Synth. Catal., 2010, 352, 1047;
(k) X. Zhang, B. Cao, S. Yu and X. Zhang, Angew. Chem., Int. Ed., 2010,
49, 4047 (Angew. Chem., 2010, 122, 4141); (l) T. Horiuchi, T. Ohta,
E. Shirakawa, K. Nozaki and H. Takaya, J. Org. Chem., 1997, 62, 4285;
(m) K. Nozaki, W. G. Li, T. Horiuchi and H. Takaya, Tetrahedron Lett.,
1997, 38, 4611; (n) T. Higashizima, N. Sakai, K. Nozaki and H. Takaya,
Tetrahedron Lett., 1994, 35, 2023; (o) G. M. Noonan, C. J. Cobley, T. Lebl
and M. L. Clarke, Chem.–Eur. J., 2010, 16, 12788; (p) R. I. Mc Donald,
G. W. Wong, R. P. Neupane, S. S. Stahl and C. R. Landis, J. Am. Chem.
Soc., 2010, 132, 14027; (q) X. Wang and S. L. Buchwald, J. Am. Chem. Soc.,
´
2011, 133, 19080; (r) A. Gual, C. Godard, S. Castillon and C. Claver, Adv.
Synth. Catal., 2010, 352, 463; (s) A. D. Worthy, C. L. Joe, T. E. Lightburn
and K. L. Tan, J. Am. Chem. Soc., 2010, 130, 14757.
In summary, the use of rhodium complexes of (S,S,S)- 4 (a) G. M. Noonan, J. A. Fuentes, C. J. Cobley and M. L. Clarke, Angew.
Chem., Int. Ed., 2012, 51, 2477; (b) A couple of entries from Table 1
BOBPHOS as catalyst for the enantioselective hydroformylation
of vinyl arenes enables very high desired isomer yields with
were archived in
a patent: G. M. Noonan, C. J. Cobley and
M. L. Clarke, WO201201657A3, 2012.
good activity. The ability to give good activity at low pressures, 5 (a) V. F. Slagt, P. C. J. Kamer, P. W. N. M. van Leeuwen and J. N. H. Reek,
J. Am. Chem. Soc., 2004, 126, 1526; (b) K. Nozaki, T. Nanno and H. Takaya,
J. Organomet. Chem., 1997, 527, 103; (c) M. L. Clarke, Curr. Org. Chem.,
2005, 9, 701.
the high solubility, and the ease of operation enable a solvent-
free highly enantioselective hydroformylation at low catalyst
loading directly delivering product of excellent purity. Projects 6 T. M. Konrad, J. Durrani, C. J. Cobley and M. L. Clarke, Chem.
Commun., 2013, 49, 3306.
7 (a) M. L. Clarke and G. J. Roff, Chem.–Eur. J., 2006, 12, 7978; (b) F. Shibahara,
K. Nozaki and T. Hiyama, J. Am. Chem. Soc., 2003, 125, 8555;
studying the mechanism of action of this unusually selective
catalyst, new related ligand systems and further applications
´
are getting underway.
(c) L. Monnereua, D. Semeril and D. Matt, Eur. J. Org. Chem., 2010, 3068.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 1475--1477 | 1477