10.1002/chem.201900271
Chemistry - A European Journal
COMMUNICATION
Angew. Chem., Int. Ed. 2004, 43, 5580. (f) S. D. Friis, A. T. Lindhardt
and T. Skrydstrup, Acc. Chem. Res. 2016, 49, 594.
[3]
[4]
(a) F. Tinnis, O. Verho, K. P. J. Gustafson, C. W. Tai, J. E. Backvall and
H. Adolfsson, Chem. Eur. J. 2014, 20, 5885. (b) P. Gautam and B. M.
Bhanage, Catal. Sci. Technol, 2015, 5, 4663.
Metal carabonyls: (a) J. Wannberg and M. J. Larhed, Org. Chem. 2003,
68, 5750. (b) A. Wieckowska, R. Fransson, L. R. Odell and M.
J .Larhed, Org. Chem. 2011, 76, 978. (c) P. Nordeman, L.R. Odell and
M. J. Larhed., Org. Chem. 2012, 77, 11393. (d) L. Odell, F. Russo and
M. Larhed, Synlett 2012, 685. (e) O. Lagerlund and M. J. Larhed, Comb.
Chem. 2005, 8, 4. (f) A. Begouin and M. Queiroz, Eur. J. Org. Chem.
2009, 2820. (g) M. Iizuka and Y. Kondo, Chem. Commun. 2006,
1739−1741. (h) O. Lagerlund, M. Mantel and M. Larhed, Tetrahedron
lett. 2009, 65, 7646.
Figure 3. (a) Recyclability of Pd@PS. (b) TEM image after 4 cycles. (c)
Histogram showing the particle size distribution.
haloarenes and amines. In addition, we have shown
a
[5]
Acyl chlorides: (a) P. Hermange, A. Lindhardt, R .Taaning, K. Bjerglund,
D. Lupp and T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061. (b) P.
Hermange, T. Gogsig, A. Lindhardt, R. Taaning and T. Skrydstrup, Org.
Lett. 2011, 13, 2444. (c) S. V. F. Hansen and T. Ulven, Org. Lett. 2015,
17, 2832.
straightforward protocol to synthesize isoindolinones starting
from 2-iodoacetophenones and aryl amines following
aminocarbonylative cyclization strategy. The catalyst is
recyclable and highly compatible with the developed process
and applicable under double-layer-vial (DLV) system for vast
substrate scope.
[6]
[7]
Silacarbocylic acids: S. Friis, R. Taaning, A. Lindhardt and T. Skrydstrup,
J. Am. Chem. Soc. 2011, 133, 18114.
CHCl3 : S. N. Gockel and K. L. Hull, Org. Lett. 2015, 17, 3236.
[8] Carbomylsilanes: R. F. Cunico and R. K. Pandey, J. Org. Chem. 2005, 70,
9048.
Experimental Section
Typical
procedure
for
the
synthesis
of
(4-
[9] DMF as CO source: (a) Y. Wan, M. Alterman, M. Larhed and A. Hallberg,
J. Org. Chem. 2002, 67, 6232. Formamides as amide source: (b) K.
Hosoi, K. Nozakiand T. Hiyama, Org. Lett. 2002, 4, 2849. (c) J. Ju, M.
Jeong, J. Moon, H. M. Jung and S. Lee, Org. Lett. 2007, 9, 4615. (d) Y.
Jo, J. Ju, J. Choe, K. H. Song and S. Lee, J. Org. Chem. 2009, 74,
6358. (e) D. N. Sawant, Y. S. Wagh, K. D. Bhatte and B. M. Bhanage,
J.Org. Chem. 2011, 76, 5489.
Methoxyphenyl)(morpholino)methanone (2a). In
a 2 mL vial 4-
iodoanisole (50 mg, 0.21 mmol), morpholine (27.4 mg, 0.32 mmol, 1.5
eq.), Na2CO3 (44.5 mg, 0.43 mmol, 2 eq.), Pd@PS (141 mg, 3 mol% Pd)
and DMF (1.5 mL) was added and this reaction vial was placed in a 5 mL
micro reaction vessel jointly mentioned as DLV which contained oxalic
acid (113.4 mg, 1.3 mmol, 6 eq.) and DMF (0.5 mL). The 5 mL reaction
DLV system was tighten with the solid top cap and heated at 130 oC for
required time. After completion of the reaction the inner vial was removed
and water was added, the organic layer was extracted with ethyl acetate.
The combined organic layer was dried over anhydrous Na2SO4 and
concentrated under reduced pressure. The crude mixture was further
purified by silica gel column chromatography (hexane:ethyl acetate =
70:30), afforded 2a as gummy liquid (42 mg, 85%). 1H NMR (600 MHz,
CDCl3) δ = 3.05 (brs, 3H), 3.70 (brs, 6H), 3.83 (s, 3H), 6.89-6.92 (m, 2H),
7.37-7.40 (m, 2H), 13C NMR (150 MHz, CDCl3) δ = 55.30, 66.86, 113.74,
[10] Phenylformate as CO source: (a) H. Li, H. Neumann, M. Beller and X. F.
Wu, Angew. Chem. Int. Ed. 2014, 53, 3183. (b) H. Konishi, H. Nagase
and K. Manabe, Chem. Commun. 2015, 51, 1854. Formic acid as CO
source: (c) P. Losch, A. S. Felten and P. Pale, Adv. Synth. Catal. 2015,
357, 2931. (d) S.V.F. Hansen and T. Ulven, Org. Lett. 2015, 17, 2832.
[11] (a) X. F. Wu, H. Neumann and M. Beller, Chem. Rev. 2013, 113, 1. (b) Y.
Bai, D. C. Davis and M. Dai. J. Org. Chem. 2017, 82, 2319.
[12] (a) A. Mertens, H. Zilch, B. Kónig, W. Scháfer, T. Poll, W. Kampe, H.
Seidel, U. Leser and H. J. Leinert, Med. Chem. 1993, 36, 2526. (b) J.
G. Topliss, L. M. Konzelman, N. Sperber and F. E. Roth, J. Med. Chem.
1964, 7, 453. (c) M. H. Abu Zarga, S. S. Sabri, S. Firdous and M.
Shamma, Phytochemistry 1987, 26, 1233. (d) N. Kanamitsu, T. Osaki,
Y. Itsuji, M. Yoshimura, H. Tsujimoto and M. Soga, Chm. Pharm. Bull.
2007, 55, 1682. (e) J. E. Wright, D. W. Reynolds and M. E. Edwards, J.
Am. Med. Assoc. 2002, 288, 2981. (f) F. G. Fang and S. J. Danishefsky,
Tetrahedron Lett. 1989, 30, 2747.
127.29, 129.14, 160.85, 170.36. ESI-MS (M+H)+
12H16NO3+ is 222.1125 observed 222.1131
calculated for
C
Acknowledgements
We are grateful to the director CSIR-IHBT for providing
necessary facilities during the course of the work. We thank Dr.
G. Saini, AIRF, JNU, New Delhi, India and Biotechnology
Division, CSIR-IHBT, for TEM analysis; For financial support the
authors thank DST Nano Mission Project (SR/NM/NS-
1340/2014). C. B. R, S.R, A.K and R.B. thanks CSIR and UGC,
New Delhi for awarding fellowship. †IHBT communication no.
4322.
[13] (a) L. Liu, J. Qiang, S. H. Bai, H. L. Sung, C. B. Miao and J. Li, Adv.
Synth. Catal. 2017, 359, 128. (b) F. Z. Han, B. B. Su, L. Jia, P. W.
Wang and X. P. Hu, Adv. Synth. Catal. 2017, 359, 146. (c) Q. Yu, N.
Zhang, J. Huang, S. Lu, Y. Zhu, X. Yu and K. Zhao, Chem. Eur. J. 2013,
19, 11184. (d) J. Suc, I. Dokli and M. Gredicak, Chem. Commun., 2016,
52, 2071.
[14] (a) M. Mori, K. Chiba and Y. Ban, J. Org. Chem. 1978, 43, 1684. (b) R.
Grigg, V. Sridharan and A. Thayaparan, Tetrahedron Lett. 2003, 44,
9017. (c) W. Ren and M. Yamane, J. Org. Chem. 2009, 74, 8332. (d) X.
Gai, R. Grigg, T. Khamnaen, S. Rajviroongit, V. Sridharan, L. Zhang, S.
Collard and A. Keep, Tetrahedron Lett. 2003, 44, 7441. (e) C. S. Cho
and W. X. Ren, Tetrahedron Lett. 2009, 50, 2097.
Keywords: palladium nanoparticles (NPs) • aminocarbonylation•
oxalic acid • amides • isoindolinones
[1] (a) C. L. Allen and J. M. Williams, J. Chem. Soc. Rev.2011, 40, 3405. (b) C.
A. G. N. Montalbetti and V. Falque, Tetrahedron lett. 2005, 61, 10827.
(c) J. S. Carey, D. Laffan, C. Thomson and, M. T. Williams, Org. Biomol.
Chem. 2006, 4, 2337. (d) T. J. Deming, Prog. Polym. Sci. 2007, 32, 858.
(e) D.-Y. Hu, Q.-Q. Wan, S. Yang, P. S. Bhadury, L.-H. Jin, K. Yan, F.
Liu, Z. Chen, W. Xue and, B.-A. Song, J. Agric. Food Chem. 2008, 56,
998.
[15] (a) A. K. Shil, S. Kumar, C. B. Reddy, S. Dadhwal, V. Thakur and P. Das,
Org. Lett. 2015, 17, 5352. (b) N. R. Guha, V. Thakur, D. Bhattacherjee,
R .Bharti and P. Das, Adv. Synth. Catal. 2016, 358, 3743. (c) R. Bharti,
C. B. Reddy and P. Das, Chemistry Select. 2017, 2, 4626. (d) V.
Thakur, A. Kumar, N. Sharma, A. K. Shil and P. Das, Adv. Synth. Catal.
2018, 360, 432.
[2] For recent reviews of transition metal mediated carbonylations: (a) A.
Brennführer, H. Neumann and M. Beller. Angew. Chem., Int. Ed. 2009,
48, 4114. (b) S. T. Gadge and B. M. Bhanage, RSC Adv. 2014, 4,
10367; (c) C. F. Bernard, Organometallics 2008, 27, 5402. (d) I. Omae,
Coord. Chem. Rev. 2011, 255, 139. (e) T. Morimoto and K. Kakiuchi,
This article is protected by copyright. All rights reserved.