F. Orsini, A. Caselli / Tetrahedron Letters 43 (2002) 7255–7257
Press: London, 1994.
7257
tion ofdiethyl methane phosphonate (50%) andunreacted
diethyl iodomethylphosphonate (50%), whereas the addi-
tion compound was not observed. Addition of diethyl
iodomethylphosphonate to 2 equivalents of samarium
iodide, followed by the carbonyl compound (about 10
min. later) gave comparable total yields (of addition and
dehydration products) with respect to the simultaneous
addition of the organic reagents. Addition of co-solvents
did not improve the reaction.
2. (a) Steel, P. J. Chem. Soc., Perkin Trans. 1 2001, 2727–
2751; (b) Krief, A.; Laval, A. M. Chem. Rev. 1999, 99,
745–777; (c) Molander, G. A.; Harris, C. R. Tetrahedron
1998, 54, 3321–3354; (d) Molander, G. A.; Harris, C. R.
Chem. Rev. 1996, 96, 307–338.
3. (a) Orsini, F.; Pulici, M. Highlights on Recent Advance-
ments in Reformatsky-type Reactions: the Cobalt
Approach. In Trends in Organometallic Chemistry; J.
Menon Ed., Research Trends Pub., Trivandrum, India,
1994, Vol. 1, pp. 625–667; (b) Fu¨rstner, A. Synthesis
1989, 571.
In summary, the method outlined for the synthesis of
b-hydroxyphosphonates represents
a
convenient
approach with some advantages to known procedures:
high yields (for aliphatic compounds), mild and neutral
conditions (with no requirement of acid or base and
anhydrous freshly distilled solvents) and easy work-up of
the reaction and recovery of the products.
4. (a) Jacobsen, M. F.; Turks, M.; Hazell, R.; Skrydstrup,
T. J. Org. Chem. 2002, 67, 2411–2417; (b) Molander, G.
A.; Etter, J. B. J. Am. Chem. Soc. 1987, 109, 6556–6558.
5. Collard, J. N.; Benezra, C. Tetrahedron Lett. 1982, 23,
3725–3728.
6. (a) Imamoto, T.; Sato, K.; Johnson, C. R. Tetrahedron
Lett. 1985, 26, 783–786; (b) Teulade, M. P.; Savignac, P.;
Aboujaoude, E. E.; Collignon, N. J. Organomet. Chem.
1985, 287, 145–156; (c) Aboujaoude, E. E.; Lietjie, S.;
Collignon, N.; Teulade, M. P.; Savignac, P. Tetrahedron
Lett. 1985, 26, 4435–4438.
7. Mikolajczyk, M.; Balcezewski, P. Synthesis 1984, 691–
694.
8. (a) Li, Z.; Racha, S.; Dan, L.; El Subbagh, H.;
Abushanab, E. J. Org. Chem. 1993, 58, 5779–5783; (b) Li,
Z.; Racha, S.; El Subbagh, H.; Abushanab, E. Tetra-
hedron Lett. 1992, 33, 5491–5494.
Typical procedure. In a typical procedure, a THF solution
(2 mL) of diethyl iodomethylphosphonate (0.5 mmol) and
carbonyl compound (0.5 mmol) was added dropwise over
a 10 min period at room temperature to a stirred solution
of SmI2 in tetrahydrofuran (0.1 M, 12 mL). Soon after
the addition, the original blue solution turned to a yellow
suspension. The reaction was monitored by TLC (EtOAc/
n-hexane). The reaction mixture was treated with aqueous
HCl (0.1N solution, 3 mL) and extracted with ethyl
acetate (3×4 mL); the organic layer was washed with a
saturated Na2SO3 aqueous solution (2 mL), dried with
sodium sulfate, filtered, the solvent evaporated and the
crude purified by column chromatography.
9. (a) Devitt, P. G.; Kee, T. P. Tetrahedron 1995, 51,
10987–10996; (b) Blazis, V. J.; Kobbler, K. J.; Spilling, S.
J. Org. Chem. 1995, 60, 931–940.
10. (a) Meier, C.; Laux, W. H. G. Tetrahedron: Asymmetry
1996, 7, 89; (b) Kitamura, M.; Tokunaga, M.; Noyori, R.
J. Am. Chem. Soc. 1995, 117, 2931–2932.
Acknowledgements
11. Yokomatsu, T.; Shibuya, S. Tetrahedron: Asymmetry
The National Research Council (C.N.R.) and Ministero
della Ricerca Scientifica e Tecnologica (MURST) are
thanked for financial support.
1992, 3, 377–378.
12. Orsini, F. Tetrahedron Lett. 1998, 39, 1425–1428.
13. Takaki, K.; Itono, Y.; Naito, Y.; Shishido, T.; Takehira,
K.; Makioka, Y.; Taniguchi, Y.; Fujiwara, Y. J. Org.
Chem. 2000, 65, 475–481.
References
14. Namy, J. L.; Souppe, J.; Kagan, H. B. Tetrahedron Lett.
1983, 24, 765–766.
1. Imamoto, T. Lanthanides in Organic Synthesis; Academic