RSC Advances
Communication
workers have discovered that a natural product piperlongumine
selectively killed cancer cells by targeting the stress response to
ROS.23 Thus, it was of our interest to examine ROS level in HCT-
116 and ML-1 cells treated with 5 (Fig. S3†). The data indicated
that a treatment with 5 at 10 mM induced a signicant increase in
ROS levels both in HCT-116 and ML-1 cells (P < 0.05). Our results
implied that selective killing of cancer cells but not normal cells
by 5 might result from the ROS generation. Further study to
investigate its exact mechanism is under way.
4 K. Juvale, J. Gallus and M. Wiese, Bioorg. Med. Chem., 2013,
21, 7858–7873.
˜
´
5 C. P. Reyes, F. Munoz-Martınez, I. R. Torrecillas,
˜
´
C. R. Mendoza, F. Gamarro, I. L. Bazzocchi, M. J. Nunez,
´
L. Pardo, S. Castanys, M. Campillo and I. A. Jimenez, J.
Med. Chem., 2007, 50, 4808–4817.
6 H. Y. Hung, E. Ohkoshi, M. Goto, K. F. Bastow, K. Nakagawa-
Goto and K. H. Lee, J. Med. Chem., 2012, 55, 5413–5424.
7 X. Tang, X. Gu, Z. Ren, Y. Ma, Y. Lai, H. Peng, S. Peng and
Y. Zhang, Bioorg. Med. Chem. Lett., 2012, 22, 2675–2680.
8 M. Nagaraju, E. Gnana Deepthi, C. Ashwini,
M. V. P. S. Vishnuvardhan, V. Lakshma Nayak, R. Chandra,
S. Ramakrishna and B. B. Gawali, Bioorg. Med. Chem. Lett.,
2012, 22, 4314–4317.
Conclusions
In summary, a novel series of compounds were designed and
synthesized based on the natural product santacruzamate A.
The SAR study demonstrated that most of these analogues as
well as synthetic santacruzamate A showed weak cytotoxicity
against the two tested cancer cell lines, HCT-116 and ML-1. It is
noteworthy that synthetic santacruzamate A did not inhibit
either total HDACs or HDAC2 in enzyme assays. While this is in
stark contrast to the original publication, it is consistent with
the known SAR of HDAC inhibitors and it is likely that the
earlier report was in error.18 However, one analogue, 5 was
found to exhibit anti-proliferative activity against HCT-116 (IC50
¼ 6.0 mM) and ML-1 (IC50 ¼ 9.4 mM) cell lines. In addition, 5 did
not cause damage to normal human colorectal cells, suggesting
that 5 selectively killed the abnormal cancer cells. It is
phenomenal that such a simple compound with a terminal
thiourea has gained submicromolar anticancer activity with low
toxicity to normal cells although the thiourea motif are reported
in some biologically active compounds.24 Further studies
showed that 5 inhibited colony formation of HCT-116, induced
apoptosis of both cancer cells HCT-116 and ML-1, and arrested
cell cycle of HCT-116 at G2/M phase. Finally, ROS generation
was observed in both cancer cell lines HCT-116 and ML-1,
implying that this might be the reason why 5 selectively elimi-
nated cancer cells. Further study to investigate its exact mech-
anism of action is underway. Due to its simple structure and
selective killing of cancer cells, 5 might provide a useful scaffold
for anticancer drug development.
¨
9 D. Roell, T. W. Rosler, S. Degen, R. Matusch and
A. Baniahmad, Chem. Biol. Drug Des., 2011, 77, 450–459.
10 D. J. Newman and G. M. Cragg, J. Nat. Prod., 2012, 75, 311–
335.
11 G. M. Cragg, P. G. Grothaus and D. J. Newman, J. Nat. Prod.,
2014, 77, 703–723.
12 A. Ganesan, Curr. Opin. Chem. Biol., 2008, 12, 306–317.
13 A. Ganesan, The Impact of Natural Products Upon Cancer
Chemotherapy, in Natural Products and Cancer Drug Discovery,
ed. F. E. Koehn, Springer, Heidelberg, 2012, pp. 3–15.
14 F. L. Cherblanc, R. W. M. Davidson, P. D. Fruscia,
N. Srimongkolpithak and M. J. Fuchter, Nat. Prod. Rep.,
2013, 30, 605–624.
15 M. Haberland, R. L. Montgomery and E. N. Olson, Nat. Rev.
Genet., 2009, 10, 32–42.
16 P. Zhu, E. Martin, J. Mengwasser, P. Schlag, K. P. Janssen and
¨
M. Gottlicher, Cancer Cell, 2004, 5, 455–463.
17 A. Vaquero, R. Sternglanz and D. Reinberg, Oncogene, 2007,
26, 5505–5520.
18 C. M. Pavlik, C. Y. B. Wong, S. Ononye, D. D. Lopez,
N. Engene, K. L. McPhail, W. H. Gerwick and
M. J. Balunas, J. Nat. Prod., 2013, 76, 2026–2033.
19 M. Paris, M. Porcelloni, M. Binaschi and D. Fattori, J. Med.
Chem., 2008, 51, 1505.
20 Y. Nakao, S. Yoshida, S. Matsunaga, N. Shindoh, Y. Terada,
K. Nagai, J. K. Yamashita, A. Ganesan, R. W. M. van Soest
and N. Fusetani, Angew. Chem., Int. Ed., 2006, 45, 7553–7557.
21 S. Wen, K. L. Carey, Y. Nakao, N. Fusetani, G. Packham and
A. Ganesan, Org. Lett., 2007, 9, 1105–1108.
Acknowledgements
The work was supported by Doctoral Program of Higher
Education of China (grant 20110171120098), National Basic
Research Program of China (973 Program grant 2012CB967004),
and Guangdong Provincial International Project of Science and
Technology (2013B051000034).
22 D. Trachootham, J. Alexandre and P. Huang, Nat. Rev. Drug
Discovery, 2009, 8, 579–591.
23 L. Raj, T. Ide, A. U. Gurkar, M. Foley, M. Schenone, X. Li,
N. J. Tolliday, T. R. Golub, S. A. Carr, A. F. Shamji,
A. M. Stern, A. Mandinova, S. L. Schreiber and S. W. Lee,
Nature, 2011, 475, 231–234.
24 (a) A. Solinas, H. Faure, H. Roudaut, E. Traiffort,
A. Schoenfelder, A. Mann, F. Manetti, M. Taddei and
M. Ruat, J. Med. Chem., 2012, 55, 1559–1571; (b) A. Mishra
and S. Batra, Curr. Top. Med. Chem., 2013, 13, 2011–2025;
(c) H. Nishiyama, M. Ono, T. Sugimoto, T. Sasai,
N. Asakawa, S. Ueno, Y. Tominaga, T. Yaegashi,
M. Nagaoka, T. Matsuzaki, N. Kogure, M. Kitajima and
H. Takayama, Med. Chem. Commun., 2014, 5, 452–458.
Notes and references
1 O. O. Fadeyi, S. T. Adamson, E. L. Myles and C. O. Okoro,
Bioorg. Med. Chem. Lett., 2008, 18, 4172–4176.
2 S. A. F. Rostom, Bioorg. Med. Chem., 2006, 14, 6475–6485.
3 W. Liu, J. Zhou, T. Zhang, H. Zhu, H. Qian, H. Zhang,
W. Huang and R. Gust, Bioorg. Med. Chem. Lett., 2012, 22,
2701–2704.
1112 | RSC Adv., 2015, 5, 1109–1112
This journal is © The Royal Society of Chemistry 2015