complex over another having been reported. We thought
that it would be useful to compare the several catalysts
with a single substrate 1.2-4 As we embarked on this
study, it was apparent that there were four potentially
independent aspects of “reactivity”: the rate of bimo-
lecular transfer of the diazo ester to the Rh-complex,2 the
ratio of C-H insertion to â-H elimination [(3 + 4 + 5)/
2],1l the chemoselectivity (3/4 + 5),1w and the diastereo-
selectivity of the insertion (4/5).1r
Cyclop en ta n e Con str u ction by
Rh -Ca ta lyzed In tr a m olecu la r C-H
In ser tion : Rela tive Rea ctivity of a Ra n ge
of Ca ta lysts
Douglass F. Taber* and Pramod V. J oshi
Department of Chemistry and Biochemistry, University of
Delaware, Newark, Delaware 19716
taberdf@udel.edu
Received December 4, 2003
Abstr a ct: The preparation and Rh-mediated cyclization of
the R-diazoester 1 are outlined, and its utility in determining
the elements that contribute to the reactivity of the inter-
mediate Rh-carbenoid is presented. The rate of disappear-
ance of diazo ester 1 catalyzed by several representative
Rh(II) complexes was determined. The observed relative rate
constants for the reaction of the Rh(II) complexes with 1
varied over a range of >107. The reactivity of the Rh-
carbenoid intermediate was explored using the ratio of the
sum of (3 + 4 + 5) to 2 (cyclization vs elimination), the ratio
of 3 to the sum of (4 + 5) (chemoselectivity), and the ratio
of 4 to 5 (diastereoselectivity). It is striking that these four
measures of reactivity were found to be independent of each
other.
We selected a series of Rh(II) carboxylates, Rh(II)
carboxamidate1p (Doyle catalysts 6h -j), and the bridged
Rh(II) carboxylate5b (Lahuerta catalyst 6g) as represen-
tative of the various Rh(II) catalysts in use today (Figure
1). Most of the carboxylate and Doyle catalysts were
commercially available. They were purified by silica gel
chromatography before use. The Lahuerta catalyst was
prepared according to the literature procedure,5b and its
structure was confirmed by X-ray analysis.
Cyclopentane construction by Rh-mediated C-H inser-
tion reaction (e.g., 1 f 3 + 4 + 5 ) has achieved wide
popularity.1 Several different Rh complexes have been
reported to effect cyclization, with advantages of one
Ob ser ved R ela t ive R a t e Con st a n t s. Following
Pirrung,2c we expected that the Rh catalysts would show
saturation kinetics, so that disappearance of starting
material would be linear with time. We monitored
disappearance of the diazoester, at 27 ( 1 ° C, by
following the UV absorbance at λ ) 265 nm. Each of the
Rh(II) complexes was purified by silica gel chromatog-
raphy to ensure that no axial ligands would be present
that would affect reactivity. The decrease in absorbance
of the starting material was plotted versus time. The
approximately linear portion of this direct plot, from 80%
to 30% of the absorbance, was used to calculate, by
dividing by catalyst concentrations, the relative rate
constants for each of the Rh(II) complexes.
(1) For studies of selective cyclopentane construction by Rh-mediated
intramolecular C-H insertion, see: (a) Wenkert, E.; Davis, L. L.;
Mylari, B. L.; Solomon, M. F.; da Silva, R. R.; Shulman, S.; Warnet,
R. J .; Ceccherelli, P.; Curini, M.; Pellicciari, R. J . Org. Chem. 1982,
47, 3242. (b) Taber D. F.; Petty, E. H. J . Org. Chem. 1982, 47, 4808.
(c) Cane, D. E.; Thomas, P. J . J . Am. Chem. Soc. 1984, 106, 5295. (d)
Rao, V. B.; George, C. F.; Wolff, S.; Agosta, W. C. J . Am. Chem. Soc.
1985, 107, 5732. (e) Taber, D. F.; Ruckle, R. E., J r. J . Am. Chem. Soc.
1986, 108, 7686. (f) Corbel, B.; Hernot, D.; Haelters, J .-P.; Sturtz, G.
Tetrahedron Lett. 1987, 28, 6605. (g) Hashimoto, S.-i.; Shinoda, T.;
Shimada, Y.; Honda, T.; Ikegami, S. Tetrahedron Lett. 1987, 28, 637.
(h) Corey, E J .; Kamiyama, K. Tetrahedron Lett. 1990, 31, 3995. (i)
Hashimoto, S.-i.; Watanabe, N.; Ikegami, S. Tetrahedron Lett. 1990,
31, 5173. (j) Doyle, M. P.; Pieters, R. J .; Taunton, J .; Pho, H. Q.; Padwa,
A.; Hertzog, D. L. J . Org. Chem. 1991, 56, 820. (k) Ceccherelli, P.;
Curini, M.; Marcotullio, M. C.; Rosati, O.; Wenkert, E. J . Org. Chem.
1991, 56, 7065. (l) Taber, D. F.; Hennessy, M. J .; Louey, J . P. J . Org.
Chem. 1992, 57, 436. (m) Padwa, A.; Austin, D. J .; Hornbuckle, S. F.;
Semones, M. A.; Doyle, M. P.; Protopopova, M. N. J . Am. Chem. Soc.
1992, 114, 1874. (n) Hashimoto, S.-i.; Watanabe, N.; Ikegami, S.
Tetrahedron Lett. 1992, 33, 2709. (o) Doyle, M. P.; Wetsrum, L. J .;
Wolthius, W. N. E.; See, M. M.; Boone, W. P.; Bagheri, V.; Pearson,
M. M. J . Am. Chem. Soc. 1993, 115, 958. (p) Wang, P.; Adams, J . J .
Am. Chem. Soc. 1994, 116, 3296. (q) Doyle, M. P.; Dyatkin, A. B.; Roos,
G. H. P.; Canas, F.; Pierson, D. A.; van Basten, A.; Muller, P.; Polleux,
P. J . Am. Chem. Soc. 1994, 116, 4507. (r) Taber, D. F.; You, K. K. J .
Am. Chem. Soc. 1995, 117, 5757. (s) Miah, S.; Slawin, A. M. Z.; Moody,
C. J .; Sheehan, S. M.; Marino, J . P.; Semones, M.; Pawda, A.; Richards,
I. C. Tetrahedron 1996, 52, 2489. (t) Doyle, M. P. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds: From Cyclo-
propanes to Ylides; Wiley: New York, 1998. (u) Wang, J .; Chen, B.;
Bao, J . J . Org. Chem. 1998, 63, 1853. (v) Taber, D. F.; Green, J . H.;
Zhang, W.; Song, R. J . Org. Chem. 2000, 65, 5436. (w) Taber, D. F.;
Malcolm, S. C. J . Org. Chem. 2001, 66, 944. (x) Davies, H. M. L.;
Grazini, M. V. A.; Aouad, E. Org. Lett. 2001, 3, 1475. (y) Yoon, C. H.;
Zaworotko, M. J .; Moulton, B.; J ung, K. W. Org. Lett. 2001, 3, 3539.
(z) Doyle, M. P.; Davies, S. B.; May, E. J . J . Org. Chem. 2001, 66, 8112.
The rate constants (Table 1) varied over a range of
>107. The pivalate catalyst (entry 3) stands out, being
(2) (a) Alonso, M. E.; Carmen Garcia, M.-d. Tetrahedron 1989, 45,
69. (b) Chipperfield, J . R. J . Organomet. Chem. 1989, 363, 253. (c)
Pirrung, M. C.; Morehead, A. T. J . Am. Chem. Soc. 1994, 116, 8991.
(d) Pirrung, M. C.; Morehead, A. T. J . Am. Chem. Soc. 1996, 118, 8162.
(e) Pirrung, M. C.; Liu, H.; Morehead, A. T. J . Am. Chem. Soc. 2002,
124, 1014.
(3) For the development of this model, see: (a) Taber, D. F.; You,
K.; Rheingold, A. L. J . Am. Chem. Soc. 1996, 118, 547. (b) Taber, D.
F.; Malcolm, S. C. J . Org. Chem. 1998, 63, 3717.
(4) For a detailed theoretical treatment of Rh(II)-mediated C-H
insertion, see: Nakamura, E.; Yoshikai, N.; Yamanaka, M. J . Am.
Chem. Soc. 2002, 124, 7181.
(5) (a) Taber, D. F.; Malcolm, S. C.; Bieger, K.; Lahuerta, P.; Sanau,
M.; Stiriba, S.-E.; Perez-Prieto, J .; Monge, M. A. J . Am. Chem. Soc.
1999, 121, 860. (b) Lahuerta, P.; Periera, I.; Perez-Prieto, J .; Sarau,
M.; Stiriba, S.-E.; Taber, D. F. J . Organomet. Chem. 2000, 612, 36.
10.1021/jo0303766 CCC: $27.50 © 2004 American Chemical Society
Published on Web 05/15/2004
4276
J . Org. Chem. 2004, 69, 4276-4278