10.1002/anie.202107356
Angewandte Chemie International Edition
COMMUNICATION
[7]
[8]
a) J. Bariwal, E. Van der Eycken, Chem. Soc. Rev. 2013, 42, 9283–9303;
b) L. Kürti, Science 2015, 348, 863-864.
In summary, we have developed a new skeletal editing strategy
based on direct deletion of the N-atom from N-heterocycles. This
protocol works well with a wide range of N-heterocycles, efficiently
providing various useful cyclic compounds with new skeletons.
Ring sizes from 3- to 20-membered rings and various type of
cyclic structures including carbocycles, O-heterocycles and N-
heterocycles can be achieved by this reaction. The advantages of
this method include its innovative utility with natural products
containing N-heterocycles, generating fundamentally new
retrosynthetic routes by combining with known methods, non-
oxidative reaction conditions, and cheap and commercially
available reagents. This is a new method for the synthesis of
different cyclic compounds from easily obtained N-heterocycles,
and may have great potential in pharmaceutical chemistry and
natural products synthesis.
a) L. Huang, M. Arndt, K. Gooßen, H. Heydt, L. J. Gooßen, Chem. Rev.
2015, 115, 2596–2697; b) R. N. Salvatore, C. H. Yoon, K. W. Jung,
Tetrahedron. 2001, 57, 7785–7811; c) K. C. K. Swamy, N. N. B. Kumar,
E. Balaraman, K. V. P. P. Kumar, Chem. Rev. 2009, 109, 2551–2651; d)
A. F. Abdel-Magid, S. J. Mehrman, Org. Process Res. Dev. 2006, 10,
971–1031.
[9]
a) H. J. Knoner, (ed) The Alkaloids: Chemistry and Biology Vol. 70
(Elsevier, San Diego, 2011); b) G. Ćirić-Marjanović, Synth. Met. 2013,
177, 1–47; c) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem.
2014, 57, 10257–10274.
[10] a) C. G. Overberger, J. G. Lombardino, R. Hiskey, J. Am. Chem. Soc.,
1957, 79, 6430–6435; b) L. A. Carpino, J. Am. Chem. Soc., 1962, 84,
2196–2201; c) P. G. Schultz, P. B. Dervan, J. Am. Chem. Soc., 1982,
104, 6660–6668; d) R. D. Miller, P. Gӧlitz, J. Janssen, J. Lemmens, J.
Am. Chem. Soc., 1984, 106, 7277–7279.
[11] D. M. Lemal, T. W. Rave, J. Am. Chem. Soc. 1965, 87, 393–394.
[12] a) C. G. Overberger, J. G. Lombardino, R. Hiskey, J. Am. Chem. Soc.,
1957, 79, 6430–6435; b) W. H. Urry, H. W. Kruse, W. R. McBride, J. Am.
Chem. Soc. 1957, 79, 6568–6569; c) R. L. Hinman, K. L. Hamm, J. Am.
Chem. Soc. 1959, 81, 3294–3297; d) C. G. Overberger, N. P. Marullo, R.
G. Hiskey, J. Am. Chem. Soc. 1961, 83, 1374–1378; e) W. D. Hinsberg,
P. B. Dervan, J. Am. Chem. Soc. 1978, 100, 1608–1610.
Acknowledgements
We are grateful for financial support by National Natural Science
Foundation of China (22071100, 21871131), the Natural Science
[13] X. Zou, J. Zou, L. Yang, G. Li, H. Lu, J. Org. Chem. 2017, 82, 4677–4688.
[14] C. V. T. Vo, J. W. Bode, J. Org. Chem. 2014, 79, 2809–2815.
[15] S. H. Kennedy, B. D. Dherange, K. J. Berger, M. D. Levin, Nature 2021,
593, 223–227.
Foundation of Jiangsu Province (BK20191244).
Keywords: N-atom deletion • C-N bond cleavage • C-C coupling
•N-heterocycles • skeletal editing
[16] Y. Zhang, X. Ge, H. Lu, G. Li, Angew. Chem. 2021, 133, 1873-
1880; Angew. Chem. Int. Ed. 2021, 60, 1845–1852.
[17] L. F. Silva, Synlett. 2014, 25, 466-476.
[1]
a) Z. Nairoukh, M. Cormier, I. Marek, Nat. Rev. Chem. 2017, 1, 0035.; b)
F. Song, T. Gou, B. -Q. Wang, Z. J. Shi, Chem. Soc. Rev. 2018, 47,
7078–7115; c) B. Wang, M. A. Perea, R. Sarpong, Angew. Chem. 2020,
132, 19058-19080; Angew. Chem. Int. Ed. 2020, 59, 18898–18919; d) Y.
Xia, G. Dong, Nat. Rev. Chem.2020, 4, 600–614.
[18] a) H. Lu, H. Jiang, L. Wojtas, X. P. Zhang, Angew. Chem. 2010, 122,
10390-10394; Angew. Chem. Int. Ed. 2010, 49, 10192–10196; b) H. Lu,
C. Li, H. Jiang, C. L. Lizardi, X. P. Zhang, Angew. Chem. 2014, 126,
7148–7152; Angew. Chem. Int. Ed. 2014, 53, 7028–7032.
[19] a) X. Q. Zeng, H. Beckers, E. Bernhardt, H. Willner, Inorg. Chem. 2011,
50, 8679−8684; b) X. Dong, G. Deng, J. Xu, H. Li, X. Zeng, J. Phys.
Chem. A. 2018, 122, 8511–8519.
[2]
a) M. Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717–1726; b) E.
Bisz, M. Szostak, ChemSusChem. 2017, 10, 3964-3981; c) A. N.
Desnoyer, J. A. Love, Chem. Soc. Rev. 2017, 46, 197–238; d) S. Q.
Zhang, X. Hong, Acc. Chem. Res. 2021, 54, 2158–2171.
[20] Caution! Pure covalent azides are in general explosive! Use of pure
N3O2SN3 is not necessary, and the DCM solution of N3O2SN3 was applied
in this work. Although no explosions occurred during this work, safety
precautions are strongly recommended.
[3]
[4]
a) K. Ouyang, W. Hao, W.X. Zhang, Z. Xi, Chem. Rev. 2015, 115, 12045–
12090; b) Q. Wang, Y. Su, L. Li, H. Huang, Chem. Soc. Rev. 2016, 45,
1257–1272.
[21] D. C. Harrowven, S. L. Kostiuk, Nat. Prod. Rep. 2012, 29, 223–242.
[22] N. S. El Din, Acta Pharm., 1999, 49, 119–125.
a) L. Hie, N. F. F. Nathel, T. K. Shah, E. L. Baker, X. Hong, Y. F. Yang,
P. Liu, K. N. Houk, N. K. Garg, Nature. 2015, 524, 79–83; b) Y. Xia, G.
Lu, P. Liu, G. Dong, Nature 2016, 539, 546–550; c) J. B. Roque, Y.
Kuroda, L. T. Göttemann, R. Sarpong, Nature, 2018, 564, 244–248; d)
H. Wang, I. Choi, T. Rogge, N. Kaplaneris, L. Ackermann, Nat. Cat. 2018,
1, 993-1001; e) J. B. Roque, Y. Kuroda, L. T. Göttemann, R. Sarpong,
Science, 2018, 361, 171–174; f) K. A. Goulas, A. V. Mironenko, G. R.
Jenness, T. Mazal, D. G. Vlachos, Nat. Cat. 2019, 2, 269–276; g) P. S.
Fier, S. Kim, K. M. Maloney, J. Am. Chem. Soc. 2019, 141, 18416–
18420; h) A. J. Smaligo, M. Swain, J. C. Quintana, M. F. Tan, D. A. Kim,
O. Kwon, Science, 2019, 364, 681–685; i) Y. Xu, X. Qi, P. Zheng, C. C.
Berti, P. Liu, G. Dong, Nature, 2019, 567, 373–378; j) G.W. Wang, O. O.
Sokolova, T. A. Young, E. M. S. Christodoulou, C. P. Butts, J. F. Bower,
J. Am. Chem. Soc. 2020, 142, 19006–19011; k) J. Caoꢀ, H. Wu, Q. Wang,
J. Zhu,ꢀ Nat. Chem., 2021, 13, 671–676.
[23] a) Wijtmans, R.; Vink, M. K. S.; Schoemaker, H.E.; van Delft, F. L.;
Blaauw, R. H.; Rutjes, F. P. J. T. Synthesis 2004, 641–662; b) F. Crestey,
M. Witt, J. W. Jaroszewski, H. Franzyk, J. Org. Chem. 2009, 74, 5652–
5655.
[24] W.-J. Bai, J. G. David, Z.-G. Feng, M. G. Weaver, K.-L. Wu, T. R. R.
Pettus, Acc. Chem. Res. 2014, 47, 3655–3664.
[25] a) K. R. Campos, Chem. Soc. Rev. 2007, 36, 1069–1084; b) E. A.
Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W. Maes, Chem.
Eur. J. 2012, 18, 10092–10142.
[26] a) W. Chen, L. Ma, A. Paul, D. Seidel, Nat. Chem. 2018, 10, 165–169; b)
A. Paul, D. Seidel, J. Am. Chem. Soc. 2019, 141, 8778–8782.
[27] F. Zhang, D. R. Spring, Chem. Soc. Rev. 2014, 43, 6906–6919.
[28] a) H. E, O'neal, S. W. Benson, J. Phy. Chem., 1968, 72, 1866–1887; b).
L. J. Johnston, J. C. Scaiano, Chem. Rev., 1989, 89, 521–547.
[29] H. Lu, H. Jiang, Y. Hu, L. Wojtas, X. P. Zhang, Chem. Sci. 2011, 2, 2361–
2366.
[5]
[6]
A. M. Szpilman, E. M. Carreira, Angew. Chem. 2010, 122, 9786–9823;
Angew. Chem. Int. Ed. 2010, 49, 9592–9628; b) T. Cernak, K. D. Dykstra,
S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546–
57; c) Y. Hu, D. Stumpfe, J. Bajorath, J. Med. Chem. 2017, 60, 1238–
1246; d) B. Mahjour, Y. Shen, W. Liu, T. Cernak, Nature. 2020, 580, 71–
75.
Shi group in 2007 reported a nickel catalyzed oxygen-atom deletion
reaction, featuring as a highly economic route to construct sp3C− sp3C
bonds however, the scope of products is quite limited and most of them
are limited to symmetric 1,2-dinaphthalenylethane derivatives. See: Z. C.
Cao, Z.J. Shi, J. Am. Chem. Soc. 2017, 139, 6546–6549.
5
This article is protected by copyright. All rights reserved.