10.1002/chem.201903754
Chemistry - A European Journal
FULL PAPER
MacLachlan, B. Polisky, Nat. Biotechnol. 2005, 23, 1002-1007; b) T. S.
Zimmermann, A. C. H. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N.
Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K.
Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. Roehl, S.
Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J.
Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manoharan, H.-P.
Vornlocher, I. MacLachlan, Nature 2006, 441, 111-114; c) A. Akinc, A.
Zumbuehl, M. Goldberg, E. S. Leshchiner, V. Busini, N. Hossain, S. A.
Bacallado, D. N. Nguyen, J. Fuller, R. Alvarez, A. Borodovsky, T. Borland,
R. Constien, A. de Fougerolles, J. R. Dorkin, K. Narayanannair
Jayaprakash, M. Jayaraman, M. John, V. Koteliansky, M. Manoharan, L.
Nechev, J. Qin, T. Racie, D. Raitcheva, K. G. Rajeev, D. W. Y. Sah, J.
Soutschek, I. Toudjarska, H.-P. Vornlocher, T. S. Zimmermann, R.
Langer, D. G. Anderson, Nat. Biotechnol. 2008, 26, 561-569.
guide strand maintained high silencing activity (~80% of target
silencing) at 10 nM when paired with a passenger strand having
one amide modification between its first and second nucleosides.
A similar result was observed for an siRNA having three and two
consecutive amide linkages in the guide and passenger strands,
respectively. Further increases in the number of amide
modifications in either the guide or passenger strand decreased
RNAi activity; however, siRNA duplexes with up to nine amide
linkages retained useful RNAi activity at higher (100 nM) siRNA
concentrations. It should be noted that the siRNA duplex studied
herein showed high sensitivity to amide modifications in one of
our previous studies.[14a] It is conceivable that other siRNA
sequences may be more tolerant to multiple amide substitutions.
While an siRNA duplex having nine amide linkages retained some
silencing activity in the presence of lipid transfecting agent, we did
not detect any activity in the absence of transfection agent,
indicating that the partial reduction of the negative charge did not
enable passive uptake in HeLa cells. Taken together our results
suggest that multiple consecutive amide linkages may be used to
optimize biological properties of siRNAs. However, additional
chemical modifications, such as conjugation with cell-penetrating
peptides, are needed to enable cellular uptake of siRNAs in the
absence of transfection agents.
[7]
[8]
M. Nothisen, M. Kotera, E. Voirin, J.-S. Remy, J.-P. Behr, J. Am. Chem.
Soc. 2009, 131, 17730-17731.
J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M.
Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V.
Kesavan, G. Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Rohl, I.
Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S.
Limmer, M. Manoharan, H. Vornlocher, Nature 2004, 432, 173-178.
a) A. Akinc, W. Querbes, S. De, J. Qin, M. Frank-Kamenetsky, K. N.
Jayaprakash, M. Jayaraman, G. Rajeev Kallanthottathil, L. Cantley
William, J. R. Dorkin, S. Butler James, L. Qin, T. Racie, A. Sprague, E.
Fava, A. Zeigerer, J. Hope Michael, M. Zerial, W. Y. Sah Dinah, K.
Fitzgerald, A. Tracy Mark, M. Manoharan, V. Koteliansky, d. Fougerolles
Antonin, A. Maier Martin, Mol. Ther. 2010, 18, 1357-1364; b) S. Falsini,
L. Ciani, S. Ristori, A. Fortunato, A. Arcangeli, J. Med. Chem. 2014, 57,
1138-1146.
[9]
Experimental Section
[10] a) J. K. Watts, D. R. Corey, J. Pathol. 2012, 226, 365-379; b) G. F.
Deleavey, M. J. Damha, Chem. Biol. 2012, 19, 937-954; c) J. B. Bramsen,
J. Kjems, in Methods Mol. Biol., Vol. 942, Springer, New York, 2013, pp.
87-109; d) J. B. Bramsen, A. Grunweller, R. K. Hartmann, J. Kjems, in
Handbook of RNA Biochemistry, Second Edition (Eds.: A. B. R.K.
Hartmann, A. Schon, and E. Westhof), Wiley-VCH, Weinheim, Germany,
2014, pp. 1243-1277; e) J. B. Bramsen, J. Kjems, Frontiers in Genetics:
Non-Coding RNA 2012, 3, Article 154.
Detailed methods are described in the Supporting Information.
Acknowledgements
This work was supported by the National Institutes of Health (R01
GM071461 and R35 GM130207 to E.R.). The Regional NMR
Facility (600 MHz instrument) at Binghamton University is
supported by NSF (CHE-0922815).
[11] A. Mullard, Nat. Rev. Drug Discovery 2018, 17, 613.
[12] B. R. Meade, K. Gogoi, A. S. Hamil, C. Palm-Apergi, A. v. d. Berg, J. C.
Hagopian, A. D. Springer, A. Eguchi, A. D. Kacsinta, C. F. Dowdy, A.
Presente, P. Lonn, M. Kaulich, N. Yoshioka, E. Gros, X.-S. Cui, S. F.
Dowdy, Nat. Biotechnol. 2014, 32, 1256-1261.
[13] a) E. Rozners, D. Katkevica, E. Bizdena, R. Strömberg, J. Am. Chem.
Soc. 2003, 125, 12125-12136; b) C. Selvam, S. Thomas, J. Abbott, S. D.
Kennedy, E. Rozners, Angew. Chem., Int. Ed. 2011, 50, 2068-2070.
[14 a) D. Mutisya, T. Hardcastle, S. K. Cheruiyot, P. S. Pallan, S. D. Kennedy,
M. Egli, M. L. Kelley, Anja van B. Smith, E. Rozners, Nucleic Acids Res.
2017, 45, 8142-8155; b) T. Hardcastle, I. Novosjolova, V. Kotikam, S. K.
Cheruiyot, D. Mutisya, S. D. Kennedy, M. Egli, M. L. Kelley, A. van
Brabant Smith, E. Rozners, ACS Chem. Biol. 2018, 13, 533-536; c) D.
Mutisya, C. Selvam, B. D. Lunstad, P. S. Pallan, A. Haas, D. Leake, M.
Egli, E. Rozners, Nucleic Acids Res. 2014, 42, 6542-6551.
Keywords: RNA interference • chemical modifications •
backbone modified RNA • internucleoside amide linkage • non-
ionic RNA analogues
[1]
[2]
Ralph A. Tripp, J. M. Karpilow, Frontiers in RNAi, Vol. 1, Bentham
Science, 2014.
a) M. L. Bobbin, J. J. Rossi, Annu. Rev. Pharmacol. Toxicol. 2016, 56,
103-122; b) J. E. Zuckerman, M. E. Davis, Nat. Rev. Drug Discovery
2015, 14, 843-856; c) A. Wittrup, J. Lieberman, Nat. Rev. Genet. 2015,
16, 543-552; d) K. Garber, Nat. Biotechnol. 2018, 36, 777-778; e) R. L.
Setten, J. J. Rossi, S.-p. Han, Nat. Rev. Drug Discovery 2019, 18, 421-
446.
[15] P. Tanui, S. D. Kennedy, B. D. Lunstad, A. Haas, D. Leake, E. Rozners,
Org. Biomol. Chem. 2014, 12, 1207-1210.
[16] a) R. Iwase, H. Miyao, T. Toyama, K. Nishimori, Nucleic Acids
Symposium Series 2006, 175-176; b)R. Iwase, T. Toyama, K. Nishimori,
Nucleosides, Nucleotides, Nucleic Acids 2007, 26, 1451-1454.
[3]
[4]
R. C. Wilson, J. A. Doudna, Annu. Rev. Biophys. 2013, 42, 217-239.
S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl,
Nature 2001, 411, 494-498.
[17] a) P. Tanui, M. Kullberg, N. Song, Y. Chivate, E. Rozners, Tetrahedron
2010, 66, 4961-4964; b) E. Rozners, Y. Liu, Org. Lett. 2003, 5, 181-184;
c) E. Rozners, Y. Liu, J.Org.Chem. 2005, 70, 9841-9848.
[5]
[6]
a) K. A. Whitehead, R. Langer, D. G. Anderson, Nat. Rev. Drug
Discovery 2009, 8, 129-138; b) R. Kanasty, J. R. Dorkin, A. Vegas, D.
Anderson, Nat. Mater. 2013, 12, 967-977.
[18] V. Kotikam, E. Rozners, Org. Lett. 2017, 19, 4122-4125.
a) D. V. Morrissey, J. A. Lockridge, L. Shaw, K. Blanchard, K. Jensen, W.
Breen, K. Hartsough, L. Machemer, S. Radka, V. Jadhav, N. Vaish, S.
Zinnen, C. Vargeese, K. Bowman, C. S. Shaffer, L. B. Jeffs, A. Judge, I.
This article is protected by copyright. All rights reserved.