ACS Medicinal Chemistry Letters
Letter
(2) de Rooij, J.; Zwartkruls, F. J. T.; Verheijen, M. H. G.; Cool, R. H.;
Nijman, S. M. B.; Wittinghofer, A.; Bos, J. L. Epac is a Rap1 guanine-
nucleotide-exchange factor directly activated by cyclic AMP. Nature
1998, 396, 474−477.
(3) Kawasaki, H.; Springett, G. M.; Mochizuki, N.; Toki, S.; Nakaya,
M.; Matsuda, M.; Housman, D. E.; Graybiel, A. M. A Family of cAMP-
Binding Proteins That Directly Activate Rap1. Science 1998, 282,
2275−2279.
(4) Cheng, X.; Ji, Z.; Tsalkova, T.; Mei, F. Epac and PKA: a tale of
two intracellular cAMP receptors. Acta Biochim. Biophys. Sin. 2008, 40,
651−662.
(5) Dekkers, B. G.; Racke, K.; Schmidt, M. Distinct PKA and Epac
compartmentalization in airway function and plasticity. Pharmacol.
Ther. 2013, 137, 248−265.
(6) Banerjee, U.; Cheng, X. Exchange proteins directly activated by
cAMP encoded by the mammalian rapgef3 gene: structure, function,
and therapeutics. Gene 2015, 570, 157−167.
(7) Chen, H.; Wild, C.; Zhou, X.; Ye, N.; Cheng, X.; Zhou, J. Recent
advances in the discovery of small molecules targeting exchange
proteins directly activated by cAMP (EPAC). J. Med. Chem. 2014, 57,
3651−65.
(8) Almahariq, M.; Chao, C.; Mei, F. C.; Hellmich, M. R.; Patrikeev,
I.; Motamedi, M.; Cheng, X. Pharmacological inhibition and genetic
knockdown of exchange protein directly activated by cAMP 1 reduce
pancreatic cancer metastasis in vivo. Mol. Pharmacol. 2015, 87, 142−9.
(9) Almahariq, M.; Tsalkova, T.; Mei, F. C.; Chen, H.; Zhou, J.;
Sastry, S. K.; Schwede, F.; Cheng, X. A novel EPAC-specific inhibitor
suppresses pancreatic cancer cell migration and invasion. Mol.
Pharmacol. 2013, 83, 122−8.
(10) Gong, B.; Shelite, T.; Mei, F. C.; Ha, T.; Hu, Y.; Xu, G.; Chang,
Q.; Wakamiya, M.; Ksiazek, T. G.; Boor, P. J.; Bouyer, D. H.; Popov,
V. L.; Chen, J.; Walker, D. H.; Cheng, X. Exchange protein directly
activated by cAMP plays a critical role in bacterial invasion during fatal
rickettsioses. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 19615−20.
(11) Tao, X.; Mei, F.; Agrawal, A.; Peters, C. J.; Ksiazek, T. G.;
Cheng, X.; Tseng, C. T. Blocking of exchange proteins directly
activated by cAMP leads to reduced replication of Middle East
respiratory syndrome coronavirus. J. Virol. 2014, 88, 3902−10.
(12) Almahariq, M.; Mei, F. C.; Cheng, X. Cyclic AMP sensor EPAC
proteins and energy homeostasis. Trends Endocrinol. Metab. 2014, 25,
60−71.
(13) Yan, J.; Mei, F. C.; Cheng, H.; Lao, D. H.; Hu, Y.; Wei, J.;
Patrikeev, I.; Hao, D.; Stutz, S. J.; Dineley, K. T.; Motamedi, M.;
Hommel, J. D.; Cunningham, K. A.; Chen, J.; Cheng, X. Enhanced
leptin sensitivity, reduced adiposity, and improved glucose homeostasis
in mice lacking exchange protein directly activated by cyclic AMP
isoform 1. Mol. Cell. Biol. 2013, 33, 918−26.
ing exchange proteins directly activated by cAMP. Bioorg. Med. Chem.
Lett. 2012, 22, 4038−43.
(20) Ye, N.; Zhu, Y.; Chen, H.; Liu, Z.; Mei, F. C.; Wild, C.; Chen,
H.; Cheng, X.; Zhou, J. Structure activity relationship of substituted 2-
(isoxazol-3-yl)-2-oxo-N′-phenyl-acetohydrazonoyl cyanide analogues:
identification of potent exchange proteins directly activated by cAMP
(EPAC) antagonists. J. Med. Chem. 2015, 58, 6033−6047.
(21) Tsalkova, T.; Mei, F. C.; Li, S.; Chepurny, O. G.; Leech, C. A.;
Liu, T.; Holz, G. G.; Woods, V. L., Jr.; Cheng, X. Isoform-specific
antagonists of exchange proteins directly activated by cAMP. Proc.
Natl. Acad. Sci. U. S. A. 2012, 109, 18613−8.
(22) Chen, H.; Tsalkova, T.; Chepurny, O. G.; Mei, F. C.; Holz, G.
G.; Cheng, X.; Zhou, J. Identification and characterization of small
molecules as potent and specific EPAC2 antagonists. J. Med. Chem.
2013, 56, 952−62.
(23) Chen, H.; Ding, C.; Wild, C.; Liu, H.; Wang, T.; White, M. A.;
Cheng, X.; Zhou, J. Efficient Synthesis of ESI-09, A Novel Non-cyclic
Nucleotide EPAC Antagonist. Tetrahedron Lett. 2013, 54, 1546−1549.
(24) Rehmann, H.; Das, J.; Knipscheer, P.; Wittinghofer, A.; Bos, J.
Structure of the cyclic-AMP-responsive exchange factor Epac2 in its
auto-inhibited state. Nature 2006, 439, 625−8.
(25) Li, S.; Tsalkova, T.; White, M. A.; Mei, F. C.; Liu, T.; Wang, D.;
Woods, V. L., Jr; Cheng, X. Mechanism of intra-cellular cAMP sensor
Epac2 activation: cAMP-induced conformational changes identified by
amide hydrogen/deuterium exchange mass spectrometry (DXMS). J.
Biol. Chem. 2011, 286, 17889−17897.
(26) Selvaratnam, R.; VanSchouwen, B.; Fogolari, F.; Mazhab-Jafari,
M. T.; Das, R.; Melacini, G. The projection analysis of NMR chemical
shifts reveals extended EPAC autoinhibition determinants. Biophys. J.
2012, 102, 630−639.
(27) Selvaratnam, R.; Mazhab-Jafari, M. T.; Das, R.; Melacini, G. The
auto-inhibitory role of the EPAC hinge helix as mapped by NMR.
PLoS One 2012, 7, e48707.
(28) Akimoto, M.; Selvaratnam, R.; McNicholl, E. T.; Verma, G.;
Taylor, S. S.; Melacini, G. Signaling through dynamic linkers as
revealed by PKA. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 14231−
14236.
(29) Boulton, S.; Akimoto, M.; Selvaratnam, R.; Bashiri, A.; Melacini,
G. A toll set to map allosteric networks through the NMR chemical
shift covariance analysis. Sci. Rep. 2014, 4, 7306.
(30) Brock, M.; Fan, F.; Mei, F. C.; Li, S.; Gessner, C.; Woods, V. L.,
Jr; Cheng, X. Conformational analysis of Epac activation using amide
hydrogen/deuterium exchange mass spectrometry. J. Biol. Chem. 2007,
282, 32256−32263.
(31) Rehmann, H. Epac-Inhibitors: facts and artefacts. Sci. Rep. 2013,
3, 3032.
(32) Brown, L. M.; Rogers, K. E.; Aroonsakool, N.; McCammon, J.
A.; Insel, P. A. Allosteric inhibitors of Epac, computational modeling
and experimental validation to identify allosteric sites and inhibitors. J.
Biol. Chem. 2014, 289, 29148−29157.
(33) Courilleau, D.; Bisserier, M.; Jullian, J.; Lucas, A.; Bouyssou, P.;
Fischmeister, R.; Blondeau, J.; Lezoualc’h, F. Identification of a
tetrahydroquinoline analog as a pharmacological inhibitor of the
cAMP-binding protein EPAC. J. Biol. Chem. 2012, 287, 44192−44202.
(14) Ulucan, C.; Wnag, X.; Balijinnyam, E.; Bai, Y.; Okumura, S.;
Sato, M.; Minamisawa, S.; Hirotani, S.; Ishikawa, Y. Developmental
changes in gene expression of Epac and its upregulation in myocardial
hypertrophy. Am. J. Physiol. Heart Cir. Physiol. 2007, 293, H1662−
H1672.
(15) Metrich, M.; Lucas, A.; Gastineau, M.; Samuel, J. L.; Heymes,
C.; Morel, E.; Lezoualc’h, F. Epac mediates beta-adrenergic receptor-
induced cardiomyocyte hypertrophy. Circ. Res. 2008, 102, 959−65.
(16) de Rooij, J.; Rehmann, H.; van Triest, M.; Cool, R. H.;
Wittinghofer, A.; Bos, J. L. Mechanism of regulation of the Epac family
of cAMP-dependent RapGEFs. J. Biol. Chem. 2000, 275, 20829−36.
(17) Zhu, Y.; Chen, H.; Boulton, S.; Mei, F.; Ye, N.; Melacini, G.;
Zhou, J.; Cheng, X. Biochemical and Pharmacological Characteri-
zations of ESI-09 Based EPAC Inhibitors: Defining the ESI-09
″Therapeutic Window″. Sci. Rep. 2015, 5, 9344.
(18) Tsalkova, T.; Fang, M. C.; Cheng, X. A Fluorescence-Based
High-Throughput Assay for the Discovery of Exchange Protein
Directly Activated by Cyclic AMP (EPAC) Antagonists. PLoS One
2012, 7, e30441.
(19) Chen, H.; Tsalkova, T.; Mei, F. C.; Hu, Y.; Cheng, X.; Zhou, J.
5-Cyano-6-oxo-1,6-dihydro-pyrimidines as potent antagonists target-
464
ACS Med. Chem. Lett. 2016, 7, 460−464