Paper
Green Chemistry
(101 MHz, CDCl3) δ 154.8 (CvO), 135.8, 129.7, 129.2, 125.9,
78.0, 71.2. IR (neat): ν = 1774 cm−1 (CvO).
4 M. Cokoja, C. Bruckmeier, B. Reiger, W. A. Hermann and
F. E. Kühn, Angew. Chem., Int. Ed., 2011, 50, 8510.
5 V. Caló, A. Nacci, A. Monopoli and A. Fanizzi, Org. Lett.,
2002, 4, 2561.
6 M. North, R. Pasquale and C. Young, Green Chem., 2010,
12, 1514.
7 A. Decortes, A. M. Castilla and A. W. Kleij, Angew. Chem.,
Int. Ed., 2010, 49, 9822.
8 W. Clegg, R. W. Harrington, M. North and R. Pasquale,
Chem.–Eur. J., 2010, 16, 6828.
4,5-Dimethyl-1,3-dioxolan-2-one (9a).33 trans-Carbonate: 1H
3
NMR (400 MHz, CDCl3) δ 4.39–4.27 (m, 2H), 1.44 (d, JHH
=
5.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 154.33 (CvO), 79.9,
18.3. IR Neat: 1774 cm−1 (CvO). cis-Carbonate: 1H NMR
3
(400 MHz, CDCl3) δ 4.91–4.78 (m, 2H), 1.34 (d, JHH = 5.9 Hz,
6H). 13C NMR (101 MHz, CDCl3) δ 154.3 (CvO), 76.1, 14.3. IR
(neat): ν = 1774 cm−1 (CvO).
Hexahydrobenzo[d][1,3]dioxol-2-one
(10a).34 1H
NMR
(400 MHz, CDCl3) δ 4.71–4.66 (m, 2H), 1.94–1.82 (m, 4H),
1.66–1.55 (m, 2H), 1.46–1.37 (m, 2H). 13C NMR (101 MHz,
9 A. Decortes and A. W. Kleij, ChemCatChem, 2011, 3,
831.
CDCl3) δ 155.4 (CvO), 75.8, 26.7, 19.1. IR (neat): ν = 1784 cm−1 10 A. Buchard, M. R. Kember, K. G. Sandeman and
(CvO).
Tetrahydro-3aH-cyclopenta[d][1,3]dioxol-2-one
NMR (400 MHz, CDCl3) δ 5.12–5.08 (m, 2H), 2.15–2.06 (m, 2H),
C. K. Williams, Chem. Commun., 2011, 47, 212;
C. J. Whiteoak, E. Martin, M. Martínez Belmonte, J. Benet-
Buchholz and A. W. Kleij, Adv. Synth. Catal., 2012, 354, 469.
(11a).35 1H
1.83–1.61 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 155.5 (CvO), 11 C. J. Whiteoak, A. Nova, F. Maseras and A. W. Kleij, Chem-
81.9, 33.1, 21.6. IR (neat): ν = 1780 cm−1 (CvO).
4-(Phenoxymethyl)-1,3-dioxolan-2-one (12a).36 1H NMR 12 C. A. McNamara, M. J. Dixon and M. Bradley, Chem. Rev.,
(400 MHz, CDCl3) δ 7.37–7.29 (m, 2H), 7.07–7.02 (m, 1H), 2002, 102, 3275.
6.96–6.91 (m, 2H), 5.08–5.01 (m, 1H), 4.63 (dd, JHH = 8.3, 13 J. Lu and P. H. Toy, Chem. Rev., 2009, 109, 815.
SusChem, 2012, 5, 2032.
2
2
3
3JHH = 8.3 Hz, 1H), 4.56 (dd, JHH = 8.3 Hz, JHH = 5.9 Hz, 1H), 14 Heterogenized Homogeneous Catalysts for Fine Chemical Pro-
2
3
2
4.25 (dd, JHH = 10.6, JHH = 4.2 Hz, 1H), 4.17 (dd, JHH
=
duction, ed. P. Barbaro and F. Liguori, Springer, Dordrecht,
10.6 Hz, JHH = 3.6 Hz, 1H). 13C NMR (101 MHz, CDCl3)
2010.
3
δ 157.8 (CvO), 129.7, 122.0, 114.6, 74.1, 66.9, 66.3. IR (neat): 15 X. Fan, S. Sayalero and M. A. Pericàs, Adv. Synth. Catal.,
ν = 1784 cm−1 (CvO).
2012, 354, 2971.
8,8a-Dihydro-3aH-indeno[1,2-d][1,3]dioxol-2-one (13a).34 1H 16 P. Kasaplar, P. Riente, C. Hartmann and M. A. Pericàs, Adv.
3
NMR (400 MHz, CDCl3) δ 7.55–7.29 (m, 4H), 6.02 (d, JHH
=
Synth. Catal., 2012, 354, 2905.
6.8 Hz, 1H), 5.49–5.43 (m, 1H), 3.43–3.39 (m, 2H). 13C NMR 17 L. Osorio-Planes, C. Rodríguez-Escrich and M. A. Pericàs,
(101 MHz, CDCl3) δ 155.8 (CvO), 140.1, 136.5, 131.1, 128.3,
126.5, 125.7, 83.6, 79.8, 38.0. IR (neat): ν = 1786 cm−1 (CvO).
Org. Lett., 2012, 14, 1816.
18 C. Ayats, A. H. Henseler and M. A. Pericàs, ChemSusChem,
2012, 5, 320.
19 For recent examples see: Y. Xie, K. Ding, Z. Liu, J. Li, G. An,
R. Tao, Z. Sun and Z. Yang, Chem.–Eur. J., 2010, 16, 6687;
L. Han, H-J. Choi, D-J. Kim, S-W. Park, B. Liu and
D-W. Park, J. Mol. Catal. A: Chem., 2011, 338, 58; L. Han,
H-J. Choi, S-J. Choi, B. Liu and D-W. Park, Green Chem.,
2011, 13, 1023; J. Sun, J. Wang, W. Cheng, J. Zhang, X. Li,
S. Zhang and Y. She, Green Chem., 2012, 14, 654; X. Chen,
J. Sun, J. Wang and W. Cheng, Tetrahedron Lett., 2012, 53,
2684; W. Cheng, X. Chen, J. Sun, J. Wang and S. Zhang,
Catal. Today, 2013, 200, 117.
Acknowledgements
We would like to acknowledge financial support from the ICIQ
Foundation, ICREA and the Spanish Ministerio de Economía y
Competitividad (MINECO) through projects CTQ2011-27385
(AWK), CTQ2008-00947/BQU (MAP) and CTQ2012-38594-C02-
01 (MAP), DEC 2009SGR623 (MAP). C. A. thanks MINECO for a
Juan de la Cierva postdoctoral fellowship. A. H. H. thanks the
MECD for an FPU fellowship. We thank Dr Alessandro Ferrali
for providing a sample of the indene oxide substrate.
20 K. R. Roshan, G. Mathai, J. Kim, J. Tharun, G-A. Park and
D-W. Park, Green Chem., 2012, 14, 2933; S. Liang, H. Liu,
T. Jiang, J. Song, G. Yang and B. Han, Chem. Commun.,
2011, 47, 2131.
21 C. Qi, J. Ye, W. Zeng and H. Juang, Adv. Synth. Catal., 2010,
352, 1925.
Notes and references
1 (a) Carbon Dioxide as Chemical Feedstock, ed. M. Aresta, 22 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew.
Wiley-VCH, Weinheim, 2010; (b) M. Peters, B. Köhler,
W. Kuckshinrichs, W. Leitner, P. Markewitz and
Chem., Int. Ed., 2001, 40, 2004; (b) M. Meldal and
C. Wenzel Tornøe, Chem. Rev., 2008, 108, 2952.
T. E. Müller, ChemSusChem, 2011, 4, 1216; (c) W. Leitner, 23 For some early examples of CuAAC reactions for the immo-
Acc. Chem. Res., 2002, 35, 746.
2 T. Sakakura, J. C. Choi and H. Yasuda, Chem. Rev., 2007,
107, 2365.
bilisation of catalytic species, see: (a) D. Font, C. Jimeno
and M. A. Pericàs, Org. Lett., 2006, 8, 4653; (b) A. Bastero,
D. Font and M. A. Pericàs, J. Org. Chem., 2007, 72, 2460;
(c) E. Alza, X. C. Cambeiro, C. Jimeno and M. A. Pericàs,
3 R. Martin and A. W. Kleij, ChemSusChem, 2011, 4, 1259.
1558 | Green Chem., 2014, 16, 1552–1559
This journal is © The Royal Society of Chemistry 2014