Communication
Organic & Biomolecular Chemistry
12 (a) X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma,
B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47,
560–578; (b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi,
Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110,
5064–5106; (c) G. Evano, A. Coste and K. Jouvin, Angew.
Chem., Int. Ed., 2010, 49, 2840–2859, (Angew. Chem., 2010,
122, 2902–2921).
Notes and references
1 S. T. Nguyen, L. K. Johnson, R. H. Grubbs and J. W. Ziller,
J. Am. Chem. Soc., 1992, 114, 3974–3975.
2 (a) S. T. Nguyen, R. H. Grubbs and J. W. Ziller, J. Am. Chem.
Soc., 1993, 115, 9858–9859; (b) P. Schwab, M. B. France,
J. W. Ziller and R. H. Grubbs, Angew. Chem., Int. Ed. Engl.,
1995, 34, 2039–2041, (Angew. Chem., 1995, 107, 2179–2181); 13 (a) P. H.-Y. Cheong, R. S. Paton, S. M. Bronner, G.-Y. J. Im,
(c) M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org.
Lett., 1999, 1, 953–956; (d) T. M. Trnka, J. P. Morgan,
M. S. Sanford, T. E. Wilhelm, M. Scholl, T.-L. Choi, S. Ding,
M. W. Day and R. H. Grubbs, J. Am. Chem. Soc., 2003, 125,
N. K. Garg and K. N. Houk, J. Am. Chem. Soc., 2010,
132, 1267–1269; (b) S. M. Bronner, J. L. Mackey, K. N. Houk
and N. K. Garg, J. Am. Chem. Soc., 2012, 134, 13966–
13969.
2546–2558; (e) B. K. Keitz, K. Endo, P. R. Patel, 14 (a) J. Louie and R. H. Grubbs, Organometallics, 2002, 21,
M. B. Herbert and R. H. Grubbs, J. Am. Chem. Soc., 2012,
134, 693–699; (f) L. E. Rosebrugh, M. B. Herbert,
V. M. Marx, B. K. Keitz and R. H. Grubbs, J. Am. Chem. Soc.,
2013, 135, 1276–1279.
2153–2164; (b) M. B. Dinger and J. C. Mol, Organometallics,
2003, 22, 1089–1095; (c) M. Arisawa, Y. Terada,
K. Takahashi, M. Nakagawa and A. Nishida, J. Org. Chem.,
2006, 71, 4255–4261.
3 (a) J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus Jr. and 15 (a) S. Meyerson and E. K. Fields, Tetrahedron Lett., 1967, 8,
A. H. Hoveyda, J. Am. Chem. Soc., 1999, 121, 791–799;
(b) K. Grela, S. Harutyunyan and A. Michrowska, Angew.
Chem., Int. Ed., 2002, 41, 4038–4040, (Angew. Chem., 2002,
114, 4210–4212); (c) H. Wakamatsu and S. Blechert, Angew.
Chem., Int. Ed., 2002, 41, 794–796, (Angew. Chem., 2002,
114, 832–834).
4 Reviews: (a) R. H. Grubbs and S. Chang, Tetrahedron, 1998,
54, 4413–4450; (b) A. Fürstner, Angew. Chem., Int. Ed., 2000,
39, 3012–3042, (Angew. Chem., 2000, 112, 3140–3172);
(c) R. R. Schrock and A. H. Hoveyda, Angew. Chem., Int. Ed.,
2003, 42, 4592–1633, (Angew. Chem., 2003, 115, 4740–4782);
(d) A. Deiters and S. F. Martin, Chem. Rev., 2004, 104, 2199–
2238. For enyne metathesis: (e) A. J. Giessert and
S. T. Diver, Chem. Rev., 2004, 104, 1317–1382.
571–575; (b) K. Miyawaki, R. Suzuki, T. Kawano and I. Ueda,
Tetrahedron Lett., 1997, 38, 3943–3946; (c) A. Z. Bradley and
R. P. Johnson, J. Am. Chem. Soc., 1997, 119, 9917–9918;
(d) M. G. Kociolek and R. P. Johnson, Tetrahedron Lett.,
1999, 40, 4141–4144; (e) H. Kimura, K. Torikai, K. Miyawaki
and I. Ueda, Chem. Lett., 2008, 37, 662–663; (f) J. A. Tsui
and B. T. Sterenberg, Organometallics, 2009, 28, 4906–4908;
(g) A. Ajaz, A. Z. Bradley, R. C. Burrell, W. H. H. Li,
K. J. Daoust, L. B. Bovee, K. J. DiRico and R. P. Johnson,
J. Org. Chem., 2011, 76, 9320–9328; (h) T. R. Hoye, B. Baire,
D. Niu, P. H. Willoughby and B. P. Woods, Nature, 2012,
490, 208–212; (i) B. P. Woods, B. Baire and T. R. Hoye, Org.
Lett., 2014, 16, 4578–4581; ( j) S. Y. Yun, K.-P. Wang,
N.-K. Lee, P. Mamidipalli and D. Lee, J. Am. Chem. Soc.,
2013, 135, 4668–4671; (k) K.-P. Wang, S. Y. Yun,
P. Mamidipalli and D. Lee, Chem. Sci., 2013, 4, 3205–3211.
16 For arynes in organic synthesis, see: (a) S. V. Kessar, in
Comprehensive Organic Synthesis, ed. B. M. Trost and
I. Fleming, Pergamon Press, New York, 1991, vol. 4,
pp. 483–515; (b) H. Pellissier and M. Santelli, Tetrahedron,
2003, 59, 701–730; (c) H. H. Wenk, M. Winkler and
W. Sander, Angew. Chem., Int. Ed., 2003, 42, 502–528,
(Angew. Chem., 2003, 115, 518–546); (d) R. Sanz, Org. Prep.
Proced. Int., 2008, 40, 215–291; (e) P. M. Tadross and
B. M. Stoltz, Chem. Rev., 2012, 112, 3550–3577.
5 A recent review on nonmetathetic reactions with ruthenium
alkylidene complexes, see: B. Alcaide, P. Almendros and
A. Luna, Chem. Rev., 2009, 109, 3817–3858.
6 S. Y. Yun, K.-P. Wang, M. Kim and D. Lee, J. Am. Chem.
Soc., 2012, 134, 10783–10786.
7 Hydrovinylation catalyzed by
a ruthenium alkylidene-
derived catalyst, see: J. Gavenonis, R. V. Arroyo and
M. L. Snapper, Chem. Commun., 2010, 46, 5692–5694.
8 Atom transfer reaction using ruthenium alkylidene com-
plexes: (a) J. A. Tallarico, L. M. Malnick and M. L. Snapper,
J. Org. Chem., 1999, 64, 344–345; (b) C. W. Bielawski,
J. Louie and R. H. Grubbs, J. Am. Chem. Soc., 2000, 122, 17 Activation of alkyl halides by metal–carbenoid:
12872–12873; (c) B. T. Lee, T. O. Schrader, B. Martın-
Matute, C. R. Kauffman, P. Zhang and M. L. Snapper, Tetra-
hedron, 2004, 60, 7391–7396.
9 After we completed our study, a related transformation by
palladium/allyl halides appeared in the literature, see:
H. Zhang, Q. Hu, L. Li, Y. Hu, P. Zhou, X. Zhang, H. Xie,
F. Yin, Y. Hu and S. Wang, Chem. Commun., 2014, 50, 3335–
3337.
10 The substrate decomposed over time in the absence of the
catalyst under otherwise identical conditions, see the ESI.†
11 The structure of 6a (CCDC 1039073) was confirmed by
X-ray diffraction analysis.
(a) H. V. R. Dias, R. G. B. Browning, S. A. Polach,
H. V. K. Diyabalanage and C. J. Lovely, J. Am. Chem. Soc.,
2003, 125, 9270–9271; (b) H. V. R. Dias, R. G. Browning,
S. A. Richey and C. J. Lovely, Organometallics, 2004, 23,
1200–1202; (c) R. M. Moriarty, S. Tyagi, D. Ivanov and
M. Constantinescu, J. Am. Chem. Soc., 2008, 130, 7564–
7565.
18 Halogen abstraction by carbocations from alkyl halides:
(a) E. H. White, H. P. Tiwari and M. J. Todd, J. Am. Chem.
Soc., 1968, 90, 4734–4736; (b) W. S. Johnson, C. E. Ward,
S. G. Boots, M. B. Gravestock, R. L. Markezich,
B. E. McCarry, D. A. Okorie and R. J. Parry, J. Am. Chem.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2016