10.1002/ejoc.201700181
European Journal of Organic Chemistry
FULL PAPER
Conclusions
peptides 6, 7, 8 and 9 were derived from distant constraints from
nOe cross peaks by using macromodel-v10.8 from Schrödinger
software. For more details, see supporting information.
In conclusion, extensive structural studies of Ant-Ant-Pro-Gly
tetrapeptides provided insights into their folding pattern.
Comparison of their conformations suggested that the C-
terminus ester analogs display an open (extended) structure
having only 6-membered H-bonding network in the backbone,
emanating from Ant residues. However, amide analogs namely
Acknowledgements
S.B.B, A.S.K and S.R.S are thankful to CSIR, New Delhi for
research fellowships. GJS thanks CSIR-SSB project: SSB-
000726 for financial support.
8, 9 and 10 displayed fully folded conformation featuring 10-
membered intramolecular H-bonding pa ttern – dictated by the
Pro-Gly motif. Strikingly, the C-9 turn, usually found in Ant-Pro
amides, was conspicuously absent in all these peptides. Our
studies have provided unexpected structural insights into the
folding pattern of Ant-Ant-Pro-Gly tetrapeptides, which will have
a bearing in the development of de novo peptide sequences
featuring Ant; a work which is currently underway.
Keywords: H-bonding • Folding • chain-fraying • β-turn • MD
simulation
[1] (a) L. M. Salonen, M. Ellermann, F. Diederich, Angew. Chem.2011
,
50, 4908-4944; Angew. Chem. Int. Ed. 2011, 50, 4808-4842. (b) G.
J. Rose, P. J. Fleming, J. R. Banvar, A. Maritan, Proc. Natl. Acad.
Sci.2006, 103, 16623-16633. (c) C. B. Anfinsen, H. A. Scheraga,
Adv. Protein Chem. 1975, 29, 205-300. (d) C. B. Anfinsen,
Science 1973, 181, 223-230.
Experimental Section
[2]
(a) C. M. Lombardo, G. W. Collie, K. Pulka-Ziach, F. Rosu, V.
Crystal data of Compound 5:
Gabelica, C. D. Mackereth, G. Guichard, J. Am. Chem. Soc. 2016
,
138, 10522-10530. (b) T. Hjelmgaard, O. Roy, L. Nauton, M. El-
Single crystals of
5 were obtained by slow evaporation of the
Ghozzi, D. Avignant, C. Didierjean, C. Taillefumier, S. Faure,
solution of ethyl acetate and pet ether (1:5). C32H42N4O3, M =
610.69, colorless plate, 0.18 x 0.10 x 0.07 mm3, orthorhombic,
space group P212121, a = 4.86100(10) Å, b = 23.7384(5) Å, c =
Chem. Commun. 2014
, 50, 3564-3567. (c) J. Fremaux, B.
Kauffmann, G. Guichard, J. Org. Chem. 2014, 79, 5494-5502. (d)
N. Castellucci, C. Tomasini, Chem. Soc. Rev. 2013, 42, 156-172.
(e) E. D. Santis, T. Hjelmgaard, C. Caumes, S. Faure, B. D.
Alexander, S. J. Holder, G. Siligardi, C. Taillefumier, A. A.
26.9033(6) Å, V = 3104.44(11) Å3, Z = 4, T = 100 K, 2θmax
=
5000°, Dcalc (g cm–3) = 1.307, F(000) = 1304,
µ
(mm-1) = 0.094,
Edwards, Org. Biomol. Chem. 2012
, 10, 1108-1122. (f) C.
40847 reflections collected, 5422 unique reflections
(Rint=0.0292), 5312 observed (I > 2σ (I)) reflections, multi-scan
absorption correction, Tmin = 0.983, Tmax = 0.993, 403 refined
parameters,, S = 1.089, R1 = 0.0262, wR2 = 0.0632 (all data R
= 0.0269, wR2 = 0.0636), maximum and minimum residual
electron densities; Δρmax = 0.170, Δρmin= -0.161 (eÅ-3).
Caumes, O. Roy, S. Faure, C. Taillefumier, J. Am. Chem. Soc.
2012, 134, 9553-9556. (g) K. Basuroy, B. Dinesh, N. Shamala, P.
Balaram, Angew. Chem. 2012, 124, 8866-8869; Angew. Chem.,
Int. Ed. 2012, 51, 8736-8739. (h) T. A. Martinek, F. Fulop, Chem.
Soc. Rev. 2012, 41, 687-702. (i) G. Guichard, I. Huc, Chem.
Commun. 2011, 47, 5933-5941. (j) M. I. Simone, A. A. Edwards, G.
E. Tranter, G. W. J. Fleet, Amino Acids 2011, 41, 643-661. (k) Y.
D. Wu, S. H. Gellman, Acc. Chem. Res., 2008, 41, 1231-1232. (l)
C. M. Goodman, S. Choi, S. Shandler, W. F. DeGrado, Nat. Chem.
Biol., 2007, 3, 252-262. (m) D. J. Hill, M. J. Mio, R. B. Prince, T. S.
Hughes, J. S. Moore, Chem. Rev. 2001, 101, 3893-4012. (n) S. H.
Gellman, Acc. Chem. Res. 1998, 31, 173-180.
(a) G. N. Tew, R. W. Scott, M. L. Klein, W. F. DeGrado, Acc.
Chem. Res., 2009, 43, 30-39. (b) P. I. Arvidsson, J. Frackenpohl,
N. S. Ryder, B. Liechty, F. Petersen, H. Zimmermann, G. P.
Camenisch, R. Woessner, D. Seebach, ChemBiochem 2001, 2,
771–773. (c) Y. Hamuro, J. P. Schneider, W. F. DeGrado, J. Am.
Chem. Soc. 1999, 121, 12200-12201.
(a) J. Garric, J.M. Leger, I. Huc, Angew. Chem. 2005, 44, 1990-
1994; Angew. Chem. Int. Ed. 2005, 44, 1954-1958. (b) J. D.
Sadowsky, M. A. Schmitt, H. S. Lee, N. Umezawa, S. M. Wang, Y.
Tomita, S. H. Gellman, J. Am. Chem. Soc. 2005, 127, 11966-
11968. (c) J. T. Ernst, J. Becerril, H. S. Park, H. Yin, A. D.
Hamilton, Angew. Chem. 2003, 115, 553-557; Angew. Chem. Int.
Ed., 2003, 42, 535-539. (d) I. Huc, V. Maurizot, H. Gornitzka, J.M.
Leger, Chem. Commun. 2002, 6, 578-579.
Crystal data of Compound 10:
Single crystals of 10 were obtained by slow evaporation of the
solution of DCM and pet ether (1:4). C22H23Cl1N4O4, M = 442.89,
colorless plate, 0.40 x 0.33 x 0.19 mm3, monoclinic, space group
P21, a = 5.7341(3) Å, b = 17.8299(8) Å, c = 10.6686(5) Å, β =
[3]
[4]
100.7760(10)°, V = 1071.51(9) Å3, Z = 2, T = 100 K, 2θmax
=
56.00°, Dcalc (g cm–3) = 1.373, F(000) = 464,
µ
(mm-1) = 0.215,
13808 reflections collected, 5182 unique reflections
(Rint=0.0141), 5095 observed (I > 2σ (I)) reflections, multi-scan
absorption correction, Tmin = 0.919, Tmax = 0.960, 293 refined
parameters,, S = 1.042, R1 = 0.0253, wR2 = 0.0633 (all data R
= 0.0258, wR2 = 0.0637), maximum and minimum residual
electron densities; Δρmax = 0.259, Δρmin= -0.158 (eÅ-3).
The synthesis and characterization of all new compounds are
described in supporting information.
[5]
[6]
(a) M. M. Muller, M. A. Windsor, W. C. Pomerantz, S. H. Gellman,
D. Hilver, Angew. Chem. 2009, 121, 940-943; Angew. Chem. Int.
Ed. 2009, 48, 922-925. (b) K. W. Fiori, A. L. A. Puchlopek, S. J.
Miller, Nat. Chem, 2009, 1, 630-634.
(a) Q. Gan, Y. Ferrand, C. Bao, B. Kauffman, A. Grelard, H. Jaing,
I. Huc, Science 2011, 331, 1172-1175. (b) G. T. Wang, X. Zhao,
Z. T. Li, Tetrahedron 2011, 67, 48-57. (c) S. Kwon, A. Jeon, S. H.
Yoo, I. S. Chung, H. S. Lee, Angew. Chem. Int. Ed. 2010, 122,
8223-8227; Angew. Chem. Int. Ed. 2010, 49, 8232-36.
The syntheses of the peptides 5-10 were carried out by using
solution-phase peptide coupling reactions. The crystal structure
analysis of compound 5 was done on Bruker D8 VENTURE
Kappa Duo PHOTON II CPAD diffractometer. Crystal structure
analysis of compound 10 was carried out using Bruker SMART
APEX II CCD diffractometer. Solution-state 2D NMR studies
were carried out in CDCl3 on AV 500 MHz Bruker NMR
spectrometer. Molecular dynamics NMR-based structures of
This article is protected by copyright. All rights reserved.