Journal of the American Chemical Society
Communication
(d) Bai, Y.; Kim, L. M. H.; Liao, H.; Liu, X.-W. J. Org. Chem. 2013, 78,
8821. N-Arylazoles: (e) Liu, J.; Robins, M. J. Org. Lett. 2004, 6, 3421.
(6) (a) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007,
129, 6098. (b) Koreeda, T.; Kochi, T.; Kakiuchi, F. J. Am. Chem. Soc.
2009, 131, 7238. (c) Koreeda, T.; Kochi, T.; Kakiuchi, F.
Organometallics 2013, 32, 682. (d) Koreeda, T.; Kochi, T.; Kakiuchi,
F. J. Organomet. Chem. 2013, 741−742, 148.
carbamates in the absence of an ortho directing group. In the
current transformation, the C−N bonds were converted into
C−H and C−B bonds with hydroborane and diboron reagents,
respectively. Although further studies will be required to
develop a greater understanding of the scope and efficiency of
the these reactions, this work clearly demonstrates that the
current C(aryl)−N bond cleavage reaction represents a viable
disconnection process capable of enabling a nonconventional
synthetic strategy. The application of this strategy to other C−
N bonds as well as computational studies aimed at revealing the
mechanism of the reaction are currently being investigated in
our laboratory.
(7) This catalyst system is effective for the reductive cleavage of C−O
bonds of aryl ethers, esters, and carbamates. (a) Tobisu, M.;
Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47,
2946. For reductive cleavage reactions using a similar catalytic system,
́
see: (b) Alvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132,
17352. (c) Cornella, J.; Gomez-Bengoa, E.; Martin, R. J. Am. Chem.
́
Soc. 2013, 135, 1997. (d) Sergeev, A. G.; Hartwig, J. F. Science 2011,
332, 439. (e) Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J. Am. Chem.
Soc. 2012, 134,, 20226. (f) Mesganaw, T.; Fine Nathel, N. F.; Garg, N.
K. Org. Lett. 2012, 14, 2918.
ASSOCIATED CONTENT
■
S
* Supporting Information
(8) Reviews: (a) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010,
43, 1486. (b) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.−Eur. J.
2011, 17, 1728. (c) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.;
Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011,
111, 1346. (d) Mesganaw, T.; Garg, N. K. Org. Process Dev. Res. 2012,
17, 29. (e) Tobisu, M.; Chatani, N. Top. Organomet. Chem. 2013, 44,
35.
(9) Kelley, P.; Lin, S.; Edouard, G.; Day, M. W.; Agapie, T. J. Am.
Chem. Soc. 2012, 134, 5480 See also refs 7a−c.
(10) Hydrogen exchange between a nickel-hydride complex and
benzene: Beck, R.; Shoshani, M.; Johnson, S. A. Angew. Chem., Int. Ed.
2012, 51, 11753.
Experimental details and characterization data. This material is
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(11) In the reactions shown in Schemes 3A and 3C, 5−10% of
deuterium was also incorporated into the other positions of
naphthalene rings of the products and of the recovered starting
carbamates.
(12) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
7894.
(13) For example, the reaction of 10 with B2(nep)2 under the
conditions shown in Table 2 afforded none of the borylated product.
(14) Martin reported that Ni(cod)2 could react with mercury in
solution. See ref 7c.
(15) DLS measurement of the filtrate revealed that no particles
whose diameters are >20 nm existed.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Molecular Activation Directed
toward Straightforward Synthesis” from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT)
of Japan. M.T. was also supported by the “Elements Strategy
Initiative to Form Core Research Center” from MEXT. We
would like to thank Professors Yusuke Yamada and Shunichi
Fukuzumi (Osaka University) for performing the DLS
measurements and for their many helpful discussions regarding
the phase of the catalyst. We would also like to thank the
Instrumental Analysis Center, Faculty of Engineering, Osaka
University, for assistance with the HRMS measurements.
(16) Crabtree, R. H. Chem. Rev. 2012, 112, 1536.
(17) It is also probable that different metal species are present in the
catalytic reaction mixture, and several of them are responsible for the
catalysis: Kashin, A. S.; Ananikov, V. P. J. Org. Chem. 2013, 78, 11117.
(18) A general aspect of nanoparticle-catalyzed cross-coupling
REFERENCES
■
reactions: Per
́
ez-Lorenzo, M. J. Phys. Chem. Lett. 2012, 3, 167.
(1) Reviews: (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed.
2008, 47, 6338. (b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
(2) Geng, W.; Zhang, W.-X.; Hao, W.; Xi, Z. J. Am. Chem. Soc. 2012,
134, 20230 and refs therein.
(3) Reviews: (a) Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M.
̃
Chem. Rev. 2006, 106, 4622. (b) Mo, F.; Dong, G.; Zhang, Y.; Wang, J.
Org. Biomol. Chem. 2013, 11, 1582.
(4) Selected examples: (a) Wenkert, E.; Han, A.-L.; Jenny, C.-J. J.
Chem. Soc., Chem. Commun. 1988, 975. (b) Blakey, S. B.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2003, 125, 6046. (c) Reeves, J. T.;
Fandrick, D. R.; Tan, Z.; Song, J. J.; Lee, H.; Yee, N. K.; Senanayake,
C. H. Org. Lett. 2010, 12, 4388. (d) Xie, L.-G.; Wang, Z.-X. Angew.
Chem., Int. Ed. 2011, 50, 4901. (e) Zhang, X.-Q.; Wang, Z.-X. J. Org.
Chem. 2012, 77, 3658. (f) Guo, W.-J.; Wang, Z.-X. Tetrahedron 2013,
69, 9580. (g) Zhang, X.-Q.; Wang, Z.-X. Org. Biomol. Chem. 2014, 12,
1448. A related benzylic ammonium salts: (h) Maity, P.; Shacklady-
McAtee, D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. J. Am.
Chem. Soc. 2013, 135, 280.
(5) Catalytic cleavage of C−N bonds of less common aniline
derivatives was also reported. Triazenes: (a) Saeki, T.; Son, E.-C.;
Tamao, K. Org. Lett. 2004, 6, 617. Hydrazines: (b) Zhu, M.-K.; Zhao,
J.-F.; Loh, T.-P. Org. Lett. 2011, 13, 6308. (c) Liu, J.-B.; Yan, H.; Chen,
H.-X.; Luo, Y.; Weng, J.; Lu, G. Chem. Commun. 2013, 49, 5268.
5590
dx.doi.org/10.1021/ja501649a | J. Am. Chem. Soc. 2014, 136, 5587−5590