Journal of the American Chemical Society
Article
23 and 24 and 25 via supercritical fluid chromatography (SFC).
We thank Dr. Lingyang Zhu for assistance with 2D NMR
spectroscopic data, and Dr. Jeffery Bertke and Dr. Danielle Gray
for crystallographic data. We thank Mr. Stephen E. Ammann and
Dr. Paul Gormisky for checking experimental procedures (Table
3, entries 13a and 13b). We thank Ms. Alexandria Brucks for
initial investigations. We thank Johnson Matthey for a gift of
Pd(OAc)2 and Sigma-Aldrich for a gift of catalyst 2.
CONCLUSION
■
In summary, we have disclosed a palladium(II)/bis(sulfoxide)-
catalyzed allylic C−H alkylation reaction that features
unprecedented generality in scope of both the olefin and the
tertiary nucleophile. Aliphatic terminal olefins containing
reactive functionalities such as unprotected secondary alcohols,
amides, ketals, and internal olefins are viable substrates, as are
allylarenes containing reactive electrophiles such as aldehydes,
and terminal epoxides, as well as heterocyclic moieties such as
indoles and diketopiperazines. Cyclic and acyclic tertiary
nucleophiles with appended α,β-unsaturated esters, masked
aliphatic alcohols, or dense carbonyl functionality readily engage
in functionalization. The ability to synthetically tailor both
intermolecular reaction partners has enabled C−H alkylation to
be used to generate intermediates that can undergo intra-
molecular secondary reactions to rapidly construct complex
molecular architectures from simple linear starting materials.
REFERENCES
■
(1) (a) Engle, K. M.; Yu, J.-Q.; Davies, H. M. L.; Xi, Z.; You, S.-L.; Shi,
Z.-J. In Organic Chemistry: Breakthroughs and Perspectives; Wiley-VCH
Verlag GmbH & Co. KGaA: Weinheim, 2012; pp 279−333.
́
(b) Rousseaux, S.; Liegault, B.; Fagnou, K. In Modern Tools for the
Synthesis of Complex Bioactive Molecules; John Wiley & Sons, Inc.: New
York, 2012; pp 1−32. (c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem., Int. Ed. 2012, 51, 8960. (d) Chen, D. Y. K.; Youn, S. W.
Chem.Eur. J. 2012, 18, 9452. (e) White, M. C. Synlett 2012, 2746.
(f) White, M. C. Science 2012, 335, 807.
(2) (a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110,
624. (c) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed.
2009, 48, 9792. (d) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q.
Angew. Chem., Int. Ed. 2009, 48, 5094. (e) Catellani, M.; Motti, E.; Della
Ca, N. Acc. Chem. Res. 2008, 41, 1512. (f) Davies, H. M. L.; Manning, J.
R. Nature 2008, 451, 417. (g) Alberico, D.; Scott, M. E.; Lautens, M.
Chem. Rev. 2007, 107, 174. (h) Daugulis, O.; Zaitsev, V. G.; Shabashov,
D.; Pham, Q. N.; Lazareva, A. Synlett 2006, 3382. (i) Campeau, L. C.;
Fagnou, K. Chem. Commun. 2006, 1253. (j) He, J.; Li, S.; Deng, Y.; Fu,
H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014,
343, 1216.
(3) (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346.
(b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am.
Chem. Soc. 2005, 127, 6970. (c) Strambeanu, I. I.; White, M. C. J. Am.
Chem. Soc. 2013, 135, 12032. (d) Fraunhoffer, K. J.; White, M. C. J. Am.
Chem. Soc. 2007, 129, 7274. (e) Reed, S. A.; White, M. C. J. Am. Chem.
Soc. 2008, 130, 3316. (f) Stang, E. M.; White, M. C. J. Am. Chem. Soc.
2011, 133, 14892. (g) Braun, M. G.; Doyle, A. G. J. Am. Chem. Soc. 2013,
135, 12990.
EXPERIMENTAL PROCEDURES
■
General Procedure for the Allylic C−H Alkylation (Table 2). An
oven-dried, one dram (4 mL, borosilicate) vial fitted with a Teflon
magnetic stir bar was charged with Pd[1,2-bis(benzylsulfinyl)ethane]-
(OAc)2 1 (0.10 equiv, 0.030 mmol) and 2,6-dimethylbenzoquinone
(DMBQ) (1.5 equiv, 0.45 mmol). The α-olefin (1 equiv, 0.30 mmol),
nucleophile (2.0 equiv, 0.60 mmol), dimethylsulfoxide (DMSO) (0.72
mL), and 1,4-dioxane (0.18 mL) were added sequentially to the reaction
vial. The reaction setup is performed open to the atmosphere. The
reaction vial was capped and stirred at 45 °C for 24 h in an oil bath. The
vial was cooled to room temperature, and the reaction mixture was
diluted with saturated aqueous NH4Cl solution (40 mL) and extracted
with ethyl acetate (3 × 30 mL). The combined organics were dried over
anhydrous MgSO4, filtered, and concentrated in vacuo. Purification by
flash chromatography (SiO2, EtOAc/hexanes mixtures) provided the
pure linear product.
Preparation of ((Nitromethyl)sulfonyl)benzene, Synthetic
Precursor to ((1-Nitroethyl)sulfonyl)benzene (4a). The known
compound was prepared following the improved procedure of Prakash
and co-workers.10 We observed lower reactivity for both benzyl and alkyl
substrates when an older literature procedure was employed.11
Alternatively, ((nitromethyl)sulfonyl)benzene (NSM) purchased from
Sigma-Aldrich and methylated following the standard procedure (see
SI) afforded alkylation products in yield comparable to that of the
corresponding reactions run with nucleophile synthesized via the
procedure of Prakash and co-workers.10
(4) (a) Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090.
(b) Lin, S.; Song, C. X.; Cai, G. X.; Wang, W. H.; Shi, Z. J. J. Am. Chem.
Soc. 2008, 130, 12901. (c) Young, A. J.; White, M. C. Angew. Chem., Int.
Ed. 2011, 50, 6824.
(5) (a) Trost, B. M.; Hansmann, M. M.; Thaisrivongs, D. A. Angew.
Chem., Int. Ed. 2012, 51, 4950. (b) Trost, B. M.; Thaisrivongs, D. A.;
Donckele, E. J. Angew. Chem., Int. Ed. 2013, 52, 1523.
(6) A tertiary nucleophile is defined herein as any molecule having a
carbon atom with three non-hydrogen substituents.
ASSOCIATED CONTENT
■
S
* Supporting Information
(7) Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem. 2013, 2745.
(8) (a) Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2009, 48,
3224. (b) Clardy, J.; Walsh, C. Nature 2004, 432, 829. (c) Boldi, A. M.
Curr. Opin. Chem. Biol. 2004, 8, 281. (d) Chen, M. S.; White, M. C.
Science 2007, 318, 783. (e) Chen, M. S.; White, M. C. Science 2010, 327,
566. (f) Bigi, M. A.; Reed, S. A.; White, M. C. Nat. Chem. 2011, 3, 216.
(g) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2013, 135, 14052.
(9) (a) Rinner, U.; Lentsch, C.; Aichinger, C. Synthesis (Stuttgart)
2010, 3763. (b) Darroch, S.; Taylor, W.; Choo, L. K.; Mitchelson, F. Eur.
J. Pharmacol. 1990, 183, 1720. (c) Darroch, S. A.; Taylor, W. C.; Choo,
L. K.; Mitchelson, F. Eur. J. Pharmacol. 1990, 182, 131. (d) Takadoi, M.;
Katoh, T.; Ishiwata, A.; Terashima, S. Tetrahedron 2002, 58, 9903.
(e) Miller, J. H.; Aagaard, P. J.; Gibson, V. A.; Mckinney, M. J. Pharmacol.
Exp. Ther. 1992, 263, 663. (f) Chackalamannil, S.; Xia, Y. Expert Opin.
Ther. Pat. 2006, 16, 493.
Experimental procedures, characterization data, and copies of 1H
and 13C NMR spectra for all new compounds. This material is
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Dow Chemical, 2301 N. Brazosport Blvd., Freeport, Texas
77541, United States.
Notes
The authors declare no competing financial interest.
(10) Prakash, G. K. S.; Wang, F.; Zhang, Z.; Ni, C. F.; Haiges, R.; Olah,
G. A. Org. Lett. 2012, 14, 3260.
(11) Wade, P. A.; Hinney, H. R.; Amin, N. V.; Vail, P. D.; Morrow, S.
D.; Hardinger, S. A.; Saft, M. S. J. Org. Chem. 1981, 46, 765.
ACKNOWLEDGMENTS
■
Financial support was provided by the NIH/NIGMS (2R01 GM
076153B). We thank Dr. Christopher J. Welch and Dr. Erik L.
Regalado at Merck for assistance in purification of cycloadducts
5754
dx.doi.org/10.1021/ja500726e | J. Am. Chem. Soc. 2014, 136, 5750−5754