ACS Combinatorial Science
Research Article
(8) Winans, K. A.; Bertozzi, C. R. An inhibitor of the human UDP-
GlcNAc 4-epimerase identified from a uridine-based library: A strategy
to inhibit O-linked glycosylation. Chem. Biol. 2002, 9, 113−129.
(9) Valade, A.; Urban, D.; Beau, J.-M. Target-assisted selection of
galactosyltransferase binders from dynamic combinatorial libraries. An
unexpected solution with restricted amounts of the enzyme.
ChemBioChem. 2006, 7, 1023−1027.
(10) Townsend, A. P.; Roth, S.; Williams, H. E. L.; Stylianou, E.;
Thomas, N. R. New S-adenosyl-L-methionine analogues: Synthesis and
reactivity studies. Org. Lett. 2009, 11, 2976−2979.
(11) Gentle, C. A.; Harrison, S. A.; Inukai, M.; Bugg, T. D. H.
Structure−function studies on nucleoside antibiotic mureidomycin A:
synthesis of 59-functionalised uridine models. J. Chem. Soc., Perkin
Trans. 1 1999, 1287−1294.
BIOLOGICAL ASSAYS
■
The antitumor assays were performed following procedures
previously described.30 The antimalarial assay was realized
using the protocol published by Guiguemde et al.31
CONCLUSION
■
A general automated solution-based methodology from three
diversity positions was explored, optimized and used to
synthesize a 94-membered library. Equipment such as a
multichannel liquid handler, vacuum centrifuge and automated
chromatography allowed the automation of solution-phase
chemistry and assisted in the preparation of high quality
products. No marked antimalarial or anticancer activity was
witnessed and all the prepared analogs have been submitted for
screening in the MLPCN. Preliminary screening has indicated a
variety of interesting activities and full evaluation of the libraries
can be followed via the SID numbers listed in Table 1 or by
visiting PubChem Substance.
(12) McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Lenoy, E.;
Lotvin, J.; Petersen, P. J.; Siegel, M. M.; Singh, G.; Williamson, R. T.
Structures of the muraymycins, novel peptidoglycan biosynthesis
inhibitors. J. Am. Chem. Soc. 2002, 124, 10260−10261.
(13) (a) de Zwart, M.; Kourounakis, A.; Kooijman, H.; Spek, A. L.;
Link, R.; von Frijtag Drabbe Kunzel, J. K.; IJzerman, A. P. 5′-N-
̈
substituted carboxamidoadenosines as agonists for adenosine
receptors. J. Med. Chem. 1999, 42, 1384−1392. and references cited
therein. (b) Wnuk, S. F.; Liu, S.; Yuan, C. S.; Borchardt, R. T.; Robins,
M. J. Inactivation of S-adenosyl-L-homocysteine hydrolase by amide
and ester derivatives of adenosine-5′-carboxylic acid. J. Med. Chem.
1996, 39, 4162−4166.
ASSOCIATED CONTENT
* Supporting Information
Additional material as described in the text. This material is
■
S
(14) Brunschweiger, A.; Iqbal, J.; Umbach, F.; Scheiff, A. B.;
Munkonda, M. N.; Sevigny, J.; Knowles, A. F.; M uller, C. A. Selective
nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhib-
itors: Nucleotide mimetics derived from uridine-5′-carboxamide. J.
Med. Chem. 2008, 51, 4518−4528.
(15) Valade, A.; Urban, D.; Beau, J.-M. Two galactosyltransferases
selection of different binders from the same uridine-based dynamic
combinatorial library. J. Comb. Chem. 2007, 9, 1−4.
(16) Moukha-chafiq, O.; Reynolds, R. C. Parallel solution-phase
synthesis of an adenosine antibiotic analog library. ACS Comb. Sci.
2013, 15, 147−152.
(17) Xiuling, C.; Pallab, P.; Koichi, N.; Lanen, V.; Steven, G. V. L.
Biosynthetis origin and mechanism of formation of the aminoribosyl
moiety of peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 2011, 133,
14452−14459.
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Robert C. Reynolds: Department of Chemistry, University of
Alabama at Birmingham, Birmingham, AL 35294
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This investigation was supported by NIH Grant 1P41
GM086163-01 (Pilot-Scale Libraries Based on Nucleoside
Templates for the ML Initiative, Robert C. Reynolds, P.I.).
We thank James M. Riordan, Jackie Truss, Mark Richardson
and David Poon of the Molecular and Spectroscopy Section of
Southern Research Institute for analytical and spectral data. We
also thank Kip Guy and Anang Shelat at St. Jude for preliminary
single dose screening data for human brain tumor, leukemia
and malaria cell lines.
(18) Fengjuan, S.; Xiaoliu, L.; Xiaoyuan, Z.; Zhanbin, Q.; Qingmei,
Y.; Hua, C.; Jinchao, Z. Synthesis and biological activities of novel s-
triazine bridged dinucleoside analogs. Chin. J. Chem. 2011, 29, 1205−
1210.
(19) Vembaiyan, K.; Pearcey, J. A.; Bhasin, M.; Lowary, T. L.; Zou,
W. Synthesis of sugar-amino acid-nucleosides as potential glycosyl-
transferase inhibitors. Bioorg. Med. Chem. 2011, 19, 58−66.
(20) Zhang, W.; Ntai, I.; Bolla, M. L.; Malcolmson, S. J.; Kahne, D.;
Kelleher, N. L.; Walsh, C. T. Nine enzymes are required for assembly
of the pacidamycin group of peptidyl nucleoside antibiotics. Chin. J.
Chem. 2011, 133, 4250−4253.
(21) Sawa, N.; Wada, T.; Inoue, Y. Synthesis and DNA-recognition
behavior of a novel peptide ribonucleic acid with a serine backbone
(oxa-PRNA). Tetrahedron 2010, 66, 344−349.
(22) Timoshchuk, V. A.; Hogrefe, R. I. The “Corey’s reagent,” 3,5-di-
tert-butyl-1,2-benzoquinone, as a modifying agent in the synthesis of
fluorescent and double-headed nucleosides. Nucleosides, Nucleotides
Nucleic Acids 2009, 28, 464−472.
(23) Babic, A.; Gobec, S.; Gravier-Pelletier, C.; Le Merrer, Y.; Pecar,
S. Synthesis of 1-C-linked diphosphate analogues of UDP-N-Ac-
glucosamine and UDP-N-Ac-muramic acid. Tetrahedron 2008, 64,
9093−9100.
REFERENCES
■
(1) Cragg, G. M.; Newman, D. J.; Snader, K. M. Natural products in
drug discovery and development. J. Nat. Prod. 1997, 60, 52−60.
(2) Epple, R.; Kudirka, R.; Greenberg, W. A. Solid-phase synthesis of
nucleoside analogues. J. Comb. Chem. 2003, 5, 292−310 and references
cited therein..
(3) Isono, K. Current progress on nucleoside antibiotics. Pharmacol.
Ther. 1991, 52, 269−286; Nucleoside antibiotics: Structure, biological
activity and biosynthesis. J. Antibiot. 1988, 41, 1711−1739.
(4) Knapp, S. Synthesis of complex nucleoside antibiotics. Chem. Rev.
1995, 95, 1859−1876.
(5) Rosemeyer, H. The chemodiversity of purine as a constituent of
natural products. Chem. Biodiversity 2004, 1, 361−401.
(6) Lagoja, I. M. Pyrimidines as constituent of natural biologically
active compounds. Chem. Biodiversity 2005, 2, 1−50.
(7) Herforth, C.; Wiesner, J.; Franke, S.; Golisade, A.; Jomaa, A.;
Link, A. Antimalarial activity of N6-substituted adenosine derivatives. J.
Comb. Chem. 2002, 4, 302−314.
(24) Sato, H.; Wada, T.; Inoue, Y. Synthesis and conformation
control of peptide ribonucleic acid (PRNA) containing 5′-amino-5′-
deoxyribopyrimidine and 5′-amino-5′-deoxyribopurinenucleosides. J.
Bioact. Compat. Polym. 2004, 19, 65−79.
(25) Howard, N. I.; Bugg, T. D. Synthesis and activity of 5′-uridinyl
dipeptide analogues mimicking the amino terminal peptide chain of
E
dx.doi.org/10.1021/co4001452 | ACS Comb. Sci. XXXX, XXX, XXX−XXX