Organic Letters
Letter
Scheme 5. A New Total Synthesis of (+)-Monanchorin
ASSOCIATED CONTENT
* Supporting Information
■
S
NMR and IR spectra and HRMS and full experimental
procedures. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank QUB for a studentship (L.W.) and a starter grant
(K.J.H.).
■
REFERENCES
■
(1) Reviews: (a) Ribatti, D.; Crivellato, E. Biochim. Biophys. Acta
2012, 1822, 2. (b) Khazai, K.; Blatner, N. R.; Khan, M. W.; Gounari,
F.; Gounaris, E.; Dennis, K.; Bonertz, A.; Tsai, F.-N.; Strouch, M. J.;
Cheon, E.; Phillips, J. D.; Beckhove, P.; Bentrem, D. J. Cancer
Metastasis Rev. 2011, 30, 45. (c) Maltby, S.; Khazaie, K.; McNagny, K.
M. Biochim. Biophys. Acta 2009, 1769, 19.
(2) (a) Nitta, H.; Wada, Y.; Kawano, Y.; Murakami, Y.; Irie, A.;
Taniguchi, K.; Kikuchi, K.; Yamada, Y.; Suzuki, K.; Honda, J.; Wilson-
Morifuji, M.; Araki, N.; Eto, M.; Baba, H.; Imamura, T. Clin. Cancer
Res. 2013, 19, 2004. (b) For our work on C5a antagonism with
aurantimycin and the A83586C-citropeptin hybrid, see: Assem, E.-S.
K.; Peh, K. H.; Wan, B. Y.; Manaviazar, S.; Walters, M. A.; George, J.
H.; Hale, K. J. Inflamm. Res. 2008, 57 (Issue 1 Suppl.), 21.
(3) Westphal, E. In Ferbenanlytische Untersuchungen Zur Histologie
Und Klinik Des Blutes; Erlich, P., Ed.; Hirshwald: Berlin, 1891; p 17.
(4) Szajnik, M.; Czystowska, M.; Szczepanski, M. J.; Mandapathil, M.;
Whiteside, T. L. PLoS One, 2010, 5, Issue 7, e11469. DOI:10.1371/
journal.pone.0011469 (accessed Jan 13, 2014).
(5) (a) Hannafon, B. N.; Ding, W.-Q. Int. J. Mol. Sci. 2013, 14, 14240.
(b) Taylor, D. D.; Gercel-Taylor, C. Semin. Immunopathol. 2011, 33,
441. (c) Huber, V.; Filipazzi, P.; Iero, M.; Fais, S.; Rivoltini, L. J.
Translat. Med. 2008, 6, 63.
(6) (a) Valadi, H.; Ekstrom, K.; Bossios, A.; Lee, J. J.; Lotvall, J. O.
Nat. Cell Biol. 2007, 9, 654. (b) Lee, Y.; El Andolousi, S.; Wood, M. J.
A. Hum. Mol. Genet. 2012, R1−R10.
(7) Peng, P.; Yan, Y.; Keng, S. Oncol. Rep. 2011, 25, 749.
(8) (a) Meragelman, K. M.; McKee, T. C.; McMahon, J. B. J. Nat.
Prod. 2004, 67, 1165. (b) Henrich, C. J.; Goncharova, E. I.; Wilson, J.
A.; Gardella, R. S.; Johnson, T. R.; McMahon, J. B.; Takada, K.;
Bokesch, H. R.; Gustafson, K. R. Chem. Biol. Drug Res. 2007, 69, 321.
(9) Yu, M.; Snider, B. B. Org. Lett. 2009, 11, 1031.
(10) Zhao, M.-X.; Shi, Y. J. Org. Chem. 2006, 71, 5377.
(11) Zaed, A. M.; Sutherland, A. Org. Biomol. Chem. 2010, 8, 4394.
(12) Overman, L. E. J. Am. Chem. Soc. 1976, 98, 2901.
(13) For the mechanism of “dry” CF3CO2H-mediated acetal
deacetalation, see: Li, W.; Li, J.; Wu, Y.; Fuller, N.; Markus, M. A. J.
Org. Chem. 2010, 75, 1077.
(14) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.;
Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M. J.
Org. Chem. 1992, 57, 2768.
Fortunately, the room temperature Wittig reaction of methyl
triphenylphosphoranylidene acetate with the guanidine-hemi-
aminal 25 proceeded cleanly when conducted in CH2Cl2 at rt
for 18 h; a 64% yield of the desired enoate 27 was obtained. As
was the case with 21, enoate 27 had to be used immediately for
the subsequent catalytic hydrogenation step, without any undue
delay, otherwise self-destructive internal Michael addition and
polymerization gradually started to consume it (when in highly
concentrated form). The hydrogenation step gave the methyl
ester 28 in 91% yield.
A selective −75 °C semireduction of the methyl ester in 28
was now attempted with DIBAL (2.5 equiv) in order to obtain
the seven-membered hemiaminal, which underwent sponta-
neous ring opening upon aqueous workup to give the open-chain
aldehyde 29 (presumably to relieve ring strain). Unfortunately,
all of our different attempts to purify this compound by SiO2
flash chromatography led to a much more polar pair of
products being formed, which we suspected were the seven-
membered cyclic guanidine hemiaminals. Given the difficulties
associated with purifying this mixture, we eventually decided to
treat crude 29 directly with CF3CO2H in CH2Cl2 and, after 4 d
at reflux, the TFA-salt of (+)-monanchorin was isolated in 40%
overall yield, after SiO2 flash chromatography. Importantly, the
product had NMR spectra and spectral data that matched
closely with those published by Snider9 and Sutherland.11
In summary, we have developed a new and fully stereo-
controlled asymmetric synthesis of the mast cell inhibitory
alkaloid, (+)-monanchorin, that delivers this molecule as its
TFA salt in high ee and high overall yield (7.2%, 12 steps).
(15) Hale, K. J.; Manaviazar, S.; Delisser, V. M. Tetrahedron 1994, 50,
9181.
(16) For the opening of a positively charged guanidium hemiaminal
with a nonstabilized phosphorus ylide, see: Arnold, M. A.; Day, K. A.;
Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. 2006, 128, 13255.
(17) Evans, D.; Murphy, P. J. Chem. Commun. 2011, 47, 3225.
2157
dx.doi.org/10.1021/ol500616v | Org. Lett. 2014, 16, 2154−2157