Journal of the American Chemical Society
Page 8 of 10
Sugiono, E.; Raja, S.; Rueping, M. Complete field guide to
Adv. Synth. Catal. 2017, 359, 811–823. (h) Yu, L.; Wu, X.; Kim, M.
asymmetric BINOL-phosphate derived Brønsted acid and metal
catalysis: history and classification by mode of activation;
Brønsted acidity, hydrogen bonding, ion pairing, and metal
phosphates. Chem. Rev. 2014, 114, 9047–9153.
J.; Vaithiyanathan, V.; Liu, Y.; Tan, Y.; Qin, W.; Song, C. E.; Yan,
H. Asymmetric synthesis of 2-thiocyanato-2-(1-aminoalkyl)-
substituted 1-tetralones and 1-indanones with tetrasubstituted
carbon stereogenic centers via cooperative cation-binding
catalysis. Adv. Synth. Catal. 2017, 359, 1879–1891. (i) Park, S. Y.;
Hwang, I.-S.; Lee, H.-J.; Song, C. E. Biomimetic catalytic
transformation of toxic α-oxoaldehydes to high-value chiral α-
hydroxythioesters using artificial glyoxalase I. Nat. Commun.
2017, 8, 14877. (j) Tan, Y.; Luo, S.; Li, D.; Zhang, N.; Jia, S.; Liu, Y.;
Qin, W.; Song, C. E.; Yan, H. Enantioselective synthesis of anti−
syn-trihalides and anti−syn−anti-tetrahalides via asymmetric β-
elimination. J. Am. Chem. Soc. 2017, 139, 6431–6436. (k) Duan,
M.; Liu, Y.; Ao, J.; Xue, L.; Luo, S.; Tan, Y.; Qin, W.; Song, C. E.;
1
2
3
4
5
6
7
8
(5) (a) Brønsted, J. N. Some Remarks on the concept of acids
and bases. Rec. Trav. Chim. Pays Bas 1923, 42, 718−728 (German
title: Einige bemerkungen über den begriff der säuren und
basen). (b) Brønsted, J. N. The acid-basic function of molecules
and its dependency on the electric charge type. J. Phys. Chem.
1925, 30, 777−790. (c) Brønsted, J. N. Theory of the acidic-basic
function. Ber. Dtsch. Chem. Ges. B 1928, 61, 2049−2063 (German
title: Zur theorie der saure-basen-funktion). (d) Brønsted, J. N.
Acid and basic catalysis. Chem. Rev. 1928, 5, 231−338. (e) Lowry,
T. M. The uniqueness of hydrogen. J. Soc. Chem. Ind., London
1923, 42, 43−47. (f) Lowry, T. M. Co-ordination and acidity. J. Soc.
Chem. Ind., London 1923, 42, 1048−1052.
(6) (a) Schiffers, R.; Kagan, H. B. Asymmetric catalytic
reduction of ketones with hypervalent trialkoxysilanes. Synlett
1997, 1175–1178. (b) Holmes, I. P.; Kagan, H. B. The asymmetric
addition of trimethylsilylcyanide to aldehydes catalysed by
anionic chiral nucleophiles. part 1. Tetrahedron Lett. 2000, 41,
7453–7456. (c) Nakajima, M.; Orito, Y.; Ishizuka, T.; Hashimoto,
S. Enantioselective aldol reaction of trimethoxysilyl enol ether
catalyzed by lithium binaphtholate. Org. Lett. 2004, 6, 3763–
3765. (d) Hatano, M.; Ikeno, T.; Miyamoto, T.; Ishihara, K. Chiral
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Yan,
H.
Asymmetric
synthesis
of
trisubstituted
tetrahydrothiophenes via in situ generated chiral fluoride-
catalyzed cascade sulfa-Michael/Aldol reaction of 1,4-dithiane-
2,5-diol and α,β-unsaturated ketones. Org. Lett. 2017, 19, 2298–
2301. (l) Paladhi, S.; Liu, Y.; Kumar, B. S.; Jung, M.-J.; Park, S. Y.;
Yan, H.; Song, C. E. Fluoride anions in self-assembled chiral cage
for the enantioselective protonation of silyl enol ethers. Org.
Lett. 2017, 19, 3279–3282. (m) Paladhi, S.; Park, S. Y.; Yang, J. W.;
Song, C. E. Asymmetric synthesis of α‑fluoro-β-amino-oxindoles
with tetrasubstituted C − F stereogenic centers via cooperative
cation-binding catalysis. Org. Lett. 2017, 19, 5336–5339. (n)
Paladhi, S.; Hwang, I.-S.; Yoo, E. J.; Ryu, D. H.; Song, C. E. Kinetic
resolution
of
β-hydroxy
carbonyl
compounds
via
lithium binaphtholate aqua complex as
a highly effective
enantioselective dehydration using a cation-binding catalyst:
facile access to enantiopure chiral aldols. Org. Lett. 2018, 20,
2003–2006.
asymmetric catalyst for cyanohydrin synthesis. J. Am. Chem. Soc.
2005, 127, 10776–10777. (e) Hatano, M.; Horibe, T.; Ishihara, K.
Chiral lithium(I) binaphtholate salts for the enantioselective
direct Mannich-type reaction with a change of syn/anti and
absolute stereochemistry. J. Am. Chem. Soc. 2010, 132, 56–57. (f)
Kotani, S.; Kukita, K.; Tanaka, K.; Ichibakase, T.; Nakajima, M.
Lithium binaphtholate-catalyzed asymmetric addition of lithium
acetylides to carbonyl compounds. J. Org. Chem. 2014, 79, 4817–
4825. (g) Cai, H.; Nie, J.; Zheng, Y.; Ma, J.-A. Lithium
binaphtholate-catalyzed enantioselective enyne addition to
ketones: access to enynylated tertiary alcohols. J. Org. Chem.
2014, 79, 5484–5493. (h) Kotani, S.; Moritani, M.; Nakajima, M.
Chiral lithium binaphtholate for enantioselective Michael
addition of acyclic α-alkyl-β-keto esters to vinyl ketones. Asian J.
Org. Chem. 2015, 4, 616–618.
(7) (a) Yan, H.; Jang, H. B.; Lee, J.-W.; Kim, H. K.; Lee, S. W.;
Yang, J. W.; Song, C. E. A chiral-anion generator: application to
catalytic desilylative kinetic resolution of silyl-protected
secondary alcohols. Angew. Chem., Int. Ed. 2010, 49, 8915–8917.
(b) Yan, H.; Oh, J. S.; Lee, J.-W.; Song, C. E. Scalable
organocatalytic asymmetric Strecker reactions catalysed by a
chiral cyanide generator. Nat. Commun. 2012, 3, 1212. (c) Park, S.
Y.; Lee, J.-W.; Song, C. E. Parts-per-million level loading
organocatalysed enantioselective silylation of alcohols. Nat.
Commun. 2015, 6, 7512. (d) Li, L.; Liu, Y.; Peng, Y.; Yu, L.; Wu, X.;
Yan, H. Kinetic resolution of β-sulfonyl ketones through
enantioselective β-elimination using a cation-binding polyether
catalyst. Angew. Chem., Int. Ed. 2016, 55, 331–335. (e) Liu, Y.; Ao,
J.; Paladhi, S.; Song, C. E.; Yan, H. Organocatalytic asymmetric
synthesis of chiral dioxazinanes and dioxazepanes with in situ
generated nitrones via a tandem reaction pathway using a
cooperative cation binding catalyst. J. Am. Chem. Soc. 2016, 138,
16486–16492. (f) Vaithiyanathan, V.; Kim, M. J.; Liu, Y.; Yan, H.;
Song, C. E. Direct access to chiral β-fluoroamines with
quaternary stereogenic center through cooperative cation-
binding catalysis. Chem. - Eur. J. 2017, 23, 1268–1272. (g) Kim, M.
J.; Xue, L.; Liu, Y.; Paladhi, S.; Park, S. J.; Yan, H.; Song, C. E.
Cooperative cation-binding catalysis as an efficient approach for
enantioselective Friedel–Crafts reaction of indoles and pyrrole.
(8) For selected reviews and accounts, see: (a) van der Drift, R.
C.; Bouwman, E.; Drent, E. Homogeneously catalysed
isomerisation of allylic alcohols to carbonyl compounds. J.
Organomet. Chem. 2002, 650, 1−24. (b) Uma, R.; Crévisy, C.;
Grée, R. Transposition of allylic alcohols into carbonyl
compounds mediated by transition metal complexes. Chem. Rev.
2003, 103, 27−51. (c) Cadierno, V.; Crochet, P.; Gimeno, J.
Ruthenium-catalyzed isomerizations of allylic and propargylic
alcohols in aqueous and organic media: applications in synthesis.
Synlett 2008, 2008, 1105-1124. (d) Ahlsten, N.; Bartoszewicz, A.;
Martín-Matute, B. Allylic alcohols as synthetic enolate
equivalents: Isomerisation and tandem reactions catalysed by
transition metal complexes. Dalton Trans. 2012, 41, 1660−1670.
(e) Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. Catalytic
isomerization of allylic alcohols in water. ACS Catal. 2012, 2,
1079−1086. (f) Cahard, D.; Gaillard, S.; Renaud, J.-L. Asymmetric
isomerization of allylic alcohols. Tetrahedron Lett. 2015, 56, 6159-
6169. (g) Li, H.; Mazet, C. Iridium-catalyzed selective
isomerization of primary allylic alcohols. Acc. Chem. Res. 2016,
49, 1232-1241.
(9) (a) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M.-C.; Fu, G. C.
Enantioselective isomerization of allylic alcohols catalyzed by a
rhodium/phosphaferrocene complex. J. Am. Chem. Soc. 2000,
122, 9870-9871. (b) Tanaka, K.; Fu, G. C. A versatile new catalyst
for the enantioselective isomerization of allylic alcohols to
aldehydes: scope and mechanistic studies. J. Org. Chem. 2001,
66, 8177-8186.
(10) (a) Mantilli, L.; Gérard, D.; Torche, S.; Besnard, C.; Mazet,
C. Iridium-catalyzed asymmetric isomerization of primary allylic
alcohols. Angew. Chem., Int. Ed. 2009, 48, 5143–5147. (b) Mantilli,
L.; Mazet, C. Expanded scope for the iridium-catalyzed
asymmetric isomerization of primary allylic alcohols using
readily accessible second-generation catalysts. Chem. Commun.
2010, 46, 445–447.
(11) (a) Li, J.-Q.; Peters, B.; Andersson, P. G. Highly
enantioselective asymmetric isomerization of primary allylic
ACS Paragon Plus Environment