10.1002/ejoc.201901737
European Journal of Organic Chemistry
COMMUNICATION
Angew Chem Int Ed Engl. 2018, 57, 8316-8320; b) D. Schwarz, Y. Noda,
J. Klouda, K. Schwarzova-Peckova, J. Tarabek, J. Rybacek, J. Janousek,
F. Simon, M. V. Opanasenko, J. Cejka, A. Acharjya, J. Schmidt, S. Selve,
V. Reiter-Scherer, N. Severin, J. P. Rabe, P. Ecorchard, J. He, M. Polozij,
P. Nachtigall, M. J. Bojdys, Adv. Mater. 2017, 29, 1703399; c) S. Yang,
W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans,
X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc. 2018, 140, 14614-
14618.
quinoline-2-carbaldehyde with benzamidine hydrochloride (b1)
was initiated to afford imine (B1) with the promotion of Cs2CO3.
Subsequently, in the presence of an excessive base, the
nucleophilic addition of b1 with B1 was achieved and provided an
intermediate B2. Finally, B2 could be rapidly transformed into C1
which underwent oxidation to the desired product 1,3,5-triazine.
[2]
[3]
a) G. H. Gunasekar, K. Park, V. Ganesan, K. Lee, N.K. Kim, K.D. Jung
and S. Yoon, Chemistry of Materials. 2017, 29, 6740-6748; b) S.
Padmanaban, G. H. Gunasekar, M. Lee, S. Yoon, ACS Sustainable
Chem. Eng. 2019, 7, 8893-8899.
Conclusions
In summary, we have developed a novel and practical strategy for
the construction of biheteroaryls bearing quinoline and 1,3,5-
triazine ring. Compared with literature procedures, the reaction
showed advantages such as cheap starting materials, transition
metal-free and good functional group tolerance. The current
catalytic system performed via a tandem oxidative in-situ
aldehyde generation, amination, condensation and cyclization
utilized a catalytic amount of molecular iodine as catalyst in the
presence of oxidant. The mild reaction conditions make it suitable
for a wide range of methyl quinoline, methylpyridine and methyl
benzothiazole as aldehyde precursors leading to respectively
substituted 1,3,5-triazines. To the best of our knowledge, this is
the first direct method for the synthesis of 2-heteroaryl substituted
1,3,5-triazines with methyl-azaarenes. We believe that the
present methodology would have wide applications in organic
synthesis, medicinal chemistry and materials science fields.
a) Q. Q. Dang, C. Y. Liu, X. M. Wang and X. M. Zhang, ACS Appl. Mater.
Interfaces. 2018, 10, 27972-27978; b) Y. Zhao, K. X. Yao, B. Teng, T.
Zhang and Y. Han, Energy Environ. Sci. 2013, 6, 3684; c) X. Zhu, C. Tian,
S. M. Mahurin, S. H. Chai, C. Wang, S. Brown, G. M. Veith, H. Luo, H.
Liu and S. Dai, J. Am. Chem. Soc. 2012, 134, 10478-10484.
a) Y. Jiang, I. Oh, S. H. Joo, O. Buyukcakir, X. Chen, S. H. Lee, M. Huang,
W. K. Seong, J. H. Kim, J. U. Rohde, S. K. Kwak, J. W. Yoo, R. S. Ruoff,
ACS Nano. 2019, 13, 5251-5258; b) W. Yang, X. Wu, T. Liu, T. Wang
and X. Hou, Analyst. 2018, 143, 5744-5753.
[4]
[5]
[6]
a) L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A.
Thomas, L. Zhi, J. Am. Chem. Soc. 2015, 137, 219-225; b) P. Kumar, R.
Boukherroub, K. Shankar, J. Mater. Chem. A. 2018, 6, 12876-12931.
a) P. Dao, N. Smith, C. Tomkiewicz-Raulet, E. Yen-Pon, M. Camacho-
Artacho, D. Lietha, J. P. Herbeuval, X. Coumoul, C. Garbay, H. Chen, J.
Med. Chem. 2015, 58, 237-251; b) R. V. Patel, P. Kumari, D. P. Rajani,
K. H. Chikhalia, Eur. J. Med. Chem. 2011, 46, 4354-4365; c) D.
Lazewska, M. Wiecek, J. Ner, K. Kaminska, T. Kottke, J. S. Schwed, M.
Zygmunt, T. Karcz, A. Olejarz, K. Kuder, G. Latacz, M. Grosicki, J. Sapa,
J. Karolak-Wojciechowska, H. Stark, K. Kiec-Kononowicz, Eur. J. Med.
Chem. 2014, 83, 534-546; d) P. Singh, S. Kaur, P. Kumari, B. Kaur, M.
Kaur, G. Singh, R. Bhatti, M. Bhatti, J. Med. Chem. 2018, 61, 7929-7941;
e) A. H. Pang, A. Garzan, M. J. Larsen, T. J. McQuade, S. Garneau-
Tsodikova, O. V. Tsodikov, ACS Chem. Biol. 2016, 11, 3084-3092; f) V.
Lozano, L. Aguado, B. Hoorelbeke, M. Renders, M. J. Camarasa, D.
Schols, J. Balzarini, A. San-Felix, M. J. Perez-Perez, J. Med. Chem.
2011, 54, 5335-5348.
Experimental Section
The general experimental procedure is as follows: To an oven-dried
reaction vessel charged with 2-methyl quinoline (a1, 0.5 mmol, 72.5 mg),
amidine hydrochloride (b1, 1.1 mmol, 171.6 mg), iodine (50 mol %, 0.25
mmol, 63.5 mg), K2S2O8 (1.0 mmol, 270.3 mg), Cs2CO3 (2.0 mmol, 651.6
[7]
[8]
a) B. Laramee-Milette, F. Lussier, I. Ciofini and G. S. Hanan, Dalton
Trans. 2015, 44, 11551-11561; b) F. Kallmeier and R. Kempe, Angew.
Chem. Int. Ed.Engl. 2018, 57, 46-60.
mg) was added. Then,
a mixture of dried DMSO (2.5 mL) and
chlorobenzene (2.5 mL) was used as the solvent. The vessel was sealed
and heated to 120°C for 24 h. The reaction progress was monitored using
TLC. After completion of the reaction, the reaction mixture was cooled to
room temperature. The resulting mixture was diluted with brine (50 mL)
and extracted with dichloromethane (20 mL) three times. The organic
phase was dried over anhydrous Na2SO4, filtered and evaporated on a
rotary evaporator to get the crude product. The crude product was purified
by silica gel column chromatography (eluent: 15:1 petroleum ether/ethyl
acetate). Other 1,3,5-triazine derivates were prepared according to similar
procedure to t1.
a) S. Kotha, D. Kashinath and S. Kumar, Tetrahedron Lett. 2008, 49,
5419-5423; b) J. Jia, L. Zhu, Y. Wei, Z. Wu, H. Xu, D. Ding, R. Chen, D.
Ma, W. Huang, J. Mater. Chem. C. 2015, 3, 4890-4902; b) H. J. Jung, S.
H. Hwang, Y. K. Kim, J. O. Lim, S. H. Han, J. H. Lee, P. U.S. Pat. Appl.
US 2013/0099206A1, 2013.
[9]
a) R. Banerjee, N. J. Pace, D. R. Brown and E. Weerapana, J. Am. Chem.
Soc. 2013, 135, 2497-2500; b) M. Shellaiah, Y. C. Rajan and H.-C. Lin,
J. Mater. Chem. 2012, 22, 8976.
[10] a) J. Cervenka, A. Budi, N. Dontschuk, A. Stacey, A. Tadich, K. J.
Rietwyk, A. Schenk, M. T. Edmonds, Y. Yin, N. Medhekar, M. Kalbac and
C. I. Pakes, Nanoscale. 2015, 7, 1471-1478; b) N. Chakravarthi, U. K.
Aryal, K. Gunasekar, H. Y. Park, Y. S. Gal, Y. R. Cho, S. I. Yoo, M. Song
and S. H. Jin, ACS Appl. Mater. Interfaces. 2017, 9, 24753-24762.
[11] a) J. H. Forsberg, V. T. Spaziano, T. M. Balasubramanian, G. K. Liu, S.
A. Kinsley, C. A. Duckworth, J. J. Poteruca, P. S. Brown, J. L. Miller, J.
Org. Chem. 1987, 52, 1017-1021; b) F.Xu, J. Sun, Q. Shen, Tetrahedron
Lett. 2002, 43, 1867-1869; c) J. f. Wang,F. Xu, T. Cai,Q. Shen, Org.Lett.
2008, 10, 445-448; d) A. Díaz-Ortiz, A. de la Hoz, A. Moreno, A.
Sánchez-Migallón and G. Valiente, Green Chem. 2002, 4, 339-343.
[12] a) T. J. Hagen, X. Mo, A. B. Burgin, D. Fox, 3rd, Z. Zhang and M. E.
Gurney, Bioorg. Med. Chem. Lett. 2014, 24, 4031-4034; b) J. Y. Kim, J.
W. Lee, W. S. Lee, H. H. Ha, M. Vendrell, J. T. Bork, Y. Lee and Y. T.
Chang, ACS Comb. Sci. 2012, 14, 395-398; c) C. Li, X. Fan, C. Han and
H. Xu, J. Mater. Chem. C. 2018, 6, 6747-6754.
Acknowledgments
This work was supported by the Key Projects of Shaanxi
Provincial Science & Technology Department (No.2018PT-31),
Major Scientific Research Projects of the Leading Industry of
Ankang city (2016AKZDCY002).
Keywords: azaarenes • biheteroaryls • C(sp3)-H amination •
cyclization • Kornblum oxidation
[1]
a) W. Huang, J. Byun, I. Rorich, C. Ramanan, P. W. M. Blom, H. Lu, D.
Wang, L. Caire da Silva, R. Li, L. Wang, K. Landfester, K. A. I. Zhang,
This article is protected by copyright. All rights reserved.